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S1. Action Proposals: Hierarchical Spatiotem-
poral Segments

In this section, we provide the details of our method for
generating a hierarchy of action-related spatiotemporal seg-
ments from a video.

A. Generating the Foreground Segments. We initially
generate a diverse set of region proposals using the method
of [1]. The “region proposal” method works on a single
frame of video, and returns a large number of segmentation
masks that are likely to contain objects or object parts. For
each frame in the video, we generate roughly 1000 region
proposals.

In order to select foreground segments among the region
proposals, we first use the method of [1] to select an ini-
tial set of foreground segments. Each region proposal is
scored with both appearance and motion cues, and we look
for regions that have generic object-like appearance and dis-
tinct motion patterns relative to their surroundings. We refer
to [2] for the details of the scoring function. We take the top
N highest-scoring region proposals in each frame to form
an initial set of foreground segments. Given these candidate
segments, we train a linear SVM classifier for each video in-
dependently, using these candidate foreground segments as
positive examples along with randomly sampled from the
background as negative examples. For simplicity, we only
use color histogram as the feature descriptor for each seg-
ment. The segments with scores above a threshold (−1) are
considered as foreground segments.

B. Obtaining the Spatiotemporal Segment Pool.
Given the foreground segments for each frame, we seek to
compute “tracklets” of these segments over time to con-
struct the spatiotemporal segments. One straightforward
way is to perform tracking on the segments. However,
these segments may change appearance and shape drasti-
cally over time, may be poorly localized or disappear over
the course of the video. Tracking algorithms tend to fail in
these scenarios. Instead, we perform a spectral clustering
on the foreground segments to produce a pool of spatiotem-
poral segments. We define the similarity between two seg-

ments si and sj as:

K(si, sj) = exp(−dcolor(si, sj)−dshape(si, sj)−dxyt(si, sj))
(1)

where dcolor(si, sj) denotes the χ2 distance between the
color histograms of segments si and sj . dshape(si, sj) =
1 − 1

K2

∑
m(si)|m(sj) is the distance between the shape

features m(si), m(sj) of these two segments. For a seg-
ment si, we first extract a squared patch that most tightly
bounds the segment and resize the patch to K × K, then
the shape feature m(si) is defined as the binary mask of the
segment in the K ×K patch. Thus the shape feature is in-
variant to segment size. The distance metric dshape(si, sj)
denotes the percentage of non-overlapped area of the shape
masks of the segments si and sj . dxyt(si, sj) is the eu-
clidean distance between segments si and sj in both space
and time. We normalize each distance by the mean of the
distances among all segments in the video.

For each video, we compute the pairwise affinities
K(si, sj) between all pairs of segments in the video, to
obtain the affinity matrix. Next we perform spectral clus-
tering on the affinity matrix of each video independently
to produce the pool of spatiotemporal segments. In order
to maintain the purity of each spatiotemporal segment, it is
important that we set the number of clusters to a reasonably
large number. The pool of spatiotemporal segments corre-
spond to the mid-level action elements (MAEs) at the finest
scale.

C. Constructing the Hierarchy. Starting from the
initial set of spatiotemporal segments, we agglomera-
tively group the most similar spatiotemporal segments into
super-spatiotemporal segments until only a single super-
spatiotemporal segment is left. In this way, we produce
a hierarchy of spatiotemporal segments that forms a tree
structure: the leaves are the initial set of fine-grained spa-
tiotemporal segments, while the root node corresponds to
the super-spatiotemporal segment at the last iteration. The
internal nodes are produced by the “merge” operations.

Similar to Eq. (1), we define the similarity between
two spatiotemporal segments vi and vj in order to decide
whether they should be merged. We use the distance met-
rics dcolor and dxyt defined in Eq. (1) to measure the appear-
ance and space-time distances between vi and vj . Here we
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use the color histograms and space-time locations averaged
over all regions in the spatiotemporal segment as features.
Intuitively, this captures the intuition that the spatiotempo-
ral segments to be merged are similar in appearance and
close in space and time. We employ a different shape based
distance metric d̂shape to measure how well spatiotemporal
segments vi and vj fit into each other. This distance metric
is defined as: d̂shape = 1

N2

∑
(si,sj)∈{vj ,vj} dwh(si, sj),

where dwh(si, sj) is the euclidean distance between the
width and height of segments si and sj , and N is the total
number of segments in the spatiotemporal region merged
from vi and vj .

The agglomerative clustering process might produce re-
dundant spatiotemporal segments, i.e. the spatiotemporal
segment in the parent node may heavily overlap with one
in its child node. Thus we trim the tree to remove the re-
dundant nodes: we remove the child node and connect the
children of the removed node (if any) to the parent node.

S2. Generating Ground Truth Labels for Ac-
tion Parsing

In this section, we provide the details of generating
ground truth labels for the action parsing experiment on
MPI Cooking dataset. Our goal is to generate a label hier-
archy which contains actions and mid-level action elements
(MAEs) at multiple levels of granularity for each video, see
Fig. 1 for an example. In MPI Cooking, the fine-grained
action labels along with the temporal extent of each label
are provided for each video. We use these labels as the ba-
sic MAEs at the bottom level of the label hierarchy (i.e. the
MAEs at the finest scale). Then we generate labels at the
higher level of the hierarchy by recursively composing the
finer-grained labels. For example in Fig. 1, the fine-grained
labels “open fridge”, “take out food” and “close fridge” are
provided by the dataset. Then we build up the label hierar-
chy by recursively composing the finer-grained labels into
higher level labels: e.g. “open fridge and take out food” and
“open fridge, take out food and close fridge” are the auto-
matically generated higher-level labels. Due to the large
number of action categories, it is impossible to consider
all possible combinations of the fine-grained action labels.
Instead, we only consider higher action labels with length
ranging from 2 to 4, and occurs in the training set for more
than 10 times. In this way, we have in total 120 action and
MAE labels for parsing evaluation.

The goal of action parsing is to predict the label hierar-
chy for a given video and localize each instance of the ac-
tion and MAE labels. The visualizations of action parsing
are shown in the paper as well as the supplementary video.

Figure 1. Action parsing annotations. This figure shows an ex-
ample annotation for action parsing in MPI Cooking dataset. The
bottom level of the label hierarchy are the fine-grained labels pro-
vided by the dataset. These labels are served as the basic action
elements which are used to automatically generate the higher level
labels in the hierarchy.
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