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Abstract— Large, richly annotated datasets have accelerated
progress in fields such as computer vision and natural language
processing, but replicating these successes in robotics has
been challenging. While prior data collection methodologies
such as self-supervision have resulted in large datasets, the
data can have poor signal-to-noise ratio. By contrast, previous
efforts to collect task demonstrations with humans provide
better quality data, but they cannot reach the same data
magnitude. Furthermore, neither approach places guarantees
on the diversity of the data collected, in terms of solution
strategies. In this work, we leverage and extend the RoboTurk
platform to scale up data collection for robotic manipulation
using remote teleoperation. The primary motivation for our
platform is two-fold: (1) to address the shortcomings of prior
work and increase the total quantity of manipulation data
collected through human supervision by an order of magnitude
without sacrificing the quality of the data and (2) to collect data
on challenging manipulation tasks across several operators and
observe a diverse set of emergent behaviors and solutions. We
collected over 111 hours of robot manipulation data across
54 users and 3 challenging manipulation tasks in 1 week,
resulting in the largest robot dataset collected via remote
teleoperation. We evaluate the quality of our platform, the
diversity of demonstrations in our dataset, and the utility of our
dataset via quantitative and qualitative analysis. For additional
results, supplementary videos, and to download our dataset,
visit roboturk.stanford.edu/realrobotdataset

I. INTRODUCTION

Crowdsourcing mechanisms such as Amazon Mechanical

Turk have facilitated the creation of large, richly annotated

datasets. The advent of datasets, sizing in millions, has

accelerated progress in computer vision and natural language

processing [7, 30] by enabling the development and evaluation

of a wide range of learning algorithms and benchmarks.

Efforts to aggregate similar amounts of data promise to boost

performance in the field of robot manipulation.

Subsequently, the community leveraged online self-

supervised data collection [22, 28] and off-policy reinforce-

ment learning [16] to collect large quantities of physical

robot data for tasks such as grasping (over 1000 hours).

However, the data collected through such methods often

has low signal-to-noise ratio, since a large portion of the

data is collected by applying random controls. Subsequently,

the time it takes to start collecting high quality data can

be prohibitively large, limiting the complexity of the tasks

achievable with this approach. Furthermore, specification and

evaluation of a reward function for complex tasks can be

non-intuitive. In contrast, human demonstrations obviate the
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Fig. 1: Collecting data on physical robot arms with the Robo-
Turk platform. To collect task demonstrations, users connect to
our platform from remote locations using a web browser and use
their smartphone as a motion controller to move the physical robot
arm in free space. Users are provided a video stream of the robot
workspace in their web browser.

need for this specification by implicitly providing a set of

successful task executions.

Prior work [8, 43] has shown that imitation learning on

data collected from humans can achieve success on a set of

restricted task instances [1, 3, 5, 21, 29, 31, 38]. However,

these approaches have have been limited in both the scale of

data collected and the complexity of the tasks used for data

collection. The ideal approach would be able to collect data

on the scale of self-supervised methods but with the quality

of human-in-the-loop approaches.

However, replicating the success and impact that large-scale

datasets have had in vision and language for robotics has

been challenging. The core problem is that the expert needs

to demonstrate how to perform a task in real-time, instead of

offline data-labeling. Therefore, methods for real-time remote

interaction that are robust to delays in both actuation and

network latency must be established. More importantly these

methods must operate at scale to facilitate crowdsourcing.

This paper addresses the problem of large scale crowd-

sourcing on real robots. We propose an approach to collect

task demonstrations on physical robots from humans to scale

data collection along two dimensions: the quantity of data

collected, and the diversity of data collected. We extend

the RoboTurk platform [25] from simulation to real robots,

and address the ensuing challenges such as: establishing a
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framework to remotely manage robots, handling additional

delays due to hardware actuation not present in simulators,

ensuring operational safety when operated by novice users,

and managing alignment of data streams from a multitude of

sensors for a number of robots simultaneously. Furthermore,

we present three robotic manipulation tasks that require human

intervention both at the level of reasoning and dexterity of

manipulation. Lastly, we present a large-scale dataset on these

three tasks, comprised of over 111 hours of data collected

by 54 people resulting in a diverse set of solutions that is an

order of magnitude larger than state-of-the-art.

Summary of Contributions:

1) We extend the RoboTurk crowdsourcing platform to

enable remote data collection on physical robots. Our new

platform accounts for limited robot resources, additional

delays introduced by robot hardware, the need for safety

measures to protect the robots from harm, and data collection

from multiple sensor streams at different rates.

2) We introduce Object Search, Tower Creation, and Laundry

Layout: three different tasks that require human intervention

in the form of low-level dexterity of manipulation and high-

level cognitive reasoning to solve the tasks.

3) We present the largest robot dataset collected via remote

teloperation. Over the course of 1 week, we collected over

111 hours of data across 54 users on the 3 challenging

manipulation tasks that we introduced.

4) We evaluate the quality of our platform, the diversity of

demonstrations in our dataset, and the utility of our dataset

via quantitative and qualitative analysis.

II. RELATED WORK

Large-Scale Data collection in Robotics. Data-driven meth-

ods for learning in robotics have been used to collect

grasps [12] and object models [17], and run large scale

physical trials for grasping [16, 22, 28] and pushing [41].

These methods used hundreds of hours of robot interaction,

although a majority of the trials were not successful.

Simulated and Self-supervised Methods. Large scale self-

supervision has low signal-to-noise ratio due to exploration

via a random policy. While simulators can scale easily and

provide many task variations, several task types, such as those

shown in this work, can be difficult to simulate. Combinations

of these methods as in [15, 24], are limited by simulator

fidelity, and often focused on tasks with specific and easily

measurable success criterion.

Learning from Demonstration and Imitation Learning.

Imitation learning (IL) is often preferred over RL to achieve

efficiency in policy learning. Specification of reward functions

can be non-intuitive for a number of robotic tasks [27].

Imitation learning can be performed mainly through inverse

reinforcement learning (IRL) [2, 21] or behavioral cloning

(BC) [29, 31, 32]. However, these algorithms typically either

require a large amount of data (BC) or a large number of

environment interactions (IRL).

Crowdsourced Teleoperation for Robot Learning. Collect-

ing large amounts of data has been a challenge for continuous
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Fig. 2: RoboTurk system diagram for data collection on physical
robot arms. The coordination server manages users and guards
access to the physical robot arms. There is a limited number of
active teleoperation sessions (one per robot arm). Other users are
queued in the system until one of the robot arms is available for
data collection. When this occurs, the coordination server creates a
new connection between the robot arm and the user at the front of
the queue, and a new teleoperation session begins.

manipulation tasks. Crowdsourcing supervision has resulted

in some remarkable scaling of datasets in computer vision

and natural language [7, 30]. In robotics, crowdsourcing

over the internet was first introduced to robotics in the

Telegarden Project [11]. Since then a number of studies have

leveraged the crowd to ask for help [14, 35, 36]. Prior works

have also built frameworks for web-based low-latency robot

control [37]. Kehoe et al.[18] provides a treatise that touches

on the aspects of cloud robotics: big data, cloud computing,

collective robot learning and crowdsourcing. Teleoperation

mechanisms vary from game interfaces [26] to free-space

positioning interfaces [20]. A comparison of various control

interfaces shows that general purpose hardware is deficient

while special purpose hardware is more accurate but is not

widely available [19, 26].

Virtual reality-based free-space controllers have recently

been proposed both for data collection [23, 39] and policy

learning [40, 43]. While these methods have shown the

utility of data, they do not provide a seamlessly scalable

data collection mechanism. Often the data is either collected

locally or requires a powerful local client computer, to render

the high definition sensor stream to a VR headset [39, 43]. The

use of VR hardware and requirement of client-side compute

resources has limited the deployment of these interfaces on

crowdsourcing platforms.

Our system builds on RoboTurk [25], which uses a

ubiquitous smartphone-based 6-DoF controller along with

seamless cloud integration to ensure homogeneous quality of

service regardless of client’s compute resources. In contrast

to local teleoperation methods that restrict data collection to a

few users, crowdsourcing mechanisms such as RoboTurk can

allow several interesting strategies to be demonstrated that

vary across people, and across situations, leading to diversity

of the data collected, as shown in Fig. 7.
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Fig. 3: Data Collection Setup and Tasks: Our data collection setup (left) consisted of three Sawyer robot arms, each of which had
a front-facing webcam view and a top-down Kinect depth camera view. The front-facing view was streamed to each teleoperator. We
collected data on three tasks (right) that require both fine-grained dexterity and high-level planning to solve. In the Object Search task (top)
the objective is to find all instances of a certain target object category (plush animal, plastic water bottle, or paper napkin) and fit them
into the corresponding bin. In the Tower Creation task (middle), the objective is to stack the various cups and bowls to create the tallest
tower. In the Laundry Layout task (bottom) the objective is to layout an article of clothing on the table such that it lies flat without folds.

III. SYSTEM DESIGN

In order to collect our dataset, we leveraged the RoboTurk

platform [25], which allows large groups of remote users to

simultaneously collect task demonstrations by using their

smartphones as motion controllers to control robots in

simulated domains. We first review the original platform

and then discuss the extensions we implemented to enable

robust data collection on physical robot arms.

A. RoboTurk Overview

RoboTurk is a platform that allows users to seamlessly

collect task demonstrations in simulation through low-latency

teleoperation, regardless of their location or compute re-

sources. Users connect to a website that streams video from

the simulated environment, and use their smartphone as a

motion controller to control the robot. The simulation itself

runs in a remote server hosted in the cloud – this is to ensure

homogeneous quality of service to every user regardless of

available compute resources. In this way, RoboTurk facilitates

crowdsourcing task demonstrations in simulated domains from

large pools of remotely located annotators.

In order to support concurrent low-latency teleoperation

servers that allow many users to use the platform simultane-

ously, the platform utilizes several core components. Robo-

Turk leverages Web Real-Time Communication (WebRTC) to

establish low-latency communication links between a user’s

phone, web browser, and a teleoperation server that is hosted

in the cloud. We now outline the core components.

User Endpoint. Each user controls the robot arm using their

smartphone as a motion controller and receives a real-time

video stream of the robot workspace in their web browser.

The phone transmits its changes in position and its current

absolute orientation over WebRTC to the teleoperation server.

We additionally provide users with the ability to enable and

disable control of the robot so that users can re-position their

arm and phone for better ergonomics similar in nature to

interfaces for surgical robots [9].

Coordination Server. This server creates and manages

teleoperation sessions when users enter or leave the system.

Teleoperation Server. This is a process dedicated to a single

user that is created by the centralized coordination server

on a per-user basis. The server maintains its own simulator

instance, sends frames to the user’s web browser, and handles

the incoming control commands from the user.

B. Extending RoboTurk for use with real robots

While the initial RoboTurk platform works well for

collection in simulated domains, collecting data on physical

robots poses additional challenges.

Limited resources. While the number of simulation instances

that can be run in parallel is bottlenecked only by compute

resources, data collection on physical robots is bottlenecked by

the number of available robots. Thus, to extend RoboTurk to

the physical robot setting, we implemented a mutual exclusion

principle to limit the number of users on the platform. The

coordination server loads a centralized landing page for all

users and routes them to a robot and corresponding task. It

places a lock on the control of each physical robot arm so

that only one user may operate the robot at a time.

Control latency. Controlling a robot in a simulator is

markedly different from controlling a physical robot due

to stochastic delays that can occur at a hardware level

(e.g. commanding the motors) and at a network level, since

commands are sent to the robot through a network connection.

These are uncontrollable delays that are incurred in addition

to those from the connection between the user and the

teleoperation server. To account for these delays, we use

a low-pass filter to reject high-frequency user input to ensure

smooth and responsive teleoperation. By focusing on the

low-frequency content in a user’s command stream, we are

able to ensure that delays do not adversely affect a person’s
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TABLE I: Dataset Comparison. We compare our dataset to similar robot datasets collected via human supervision in prior work. Items
marked with ∗ are estimates that were extrapolated using other reported information, and interfaces marked with † are not real-time.

Name Interface Task Avg. Task Length (sec) Number of Demos Total Time (hours)

JIGSAWS[10] daVinci surgery 60* 103 1.66
Deep Imitation [43] VR pick, grasp, align 5* 1664 2.35

DAML[42] Human demos pick, place, push 5* 2941 4.08
MIME[34] Kinisthetic pick, place, push, pour 6* 8260 13.7*

PbD[8] GUI† pick, place 207* 465 25.8*
Roboturk-Real (Our) iPhone AR long horizon object manip 186 2144 111.25

capability to control the robot arm. Furthermore, instead of

having teleoperation servers run on cloud infrastructure, we

now spawn teleoperation servers on machines that are located

in close physical proximity to the robots in order to minimize

the latency of control commands send to the robot arms.

Robot safety. We address the need for safety of the robot

arms and workspaces by extending the RoboTurk smartphone

app to ensure that the user is holding the phone correctly

and exercising slow, deliberate motions by validating phone

poses. Participants in our data collection study were given

a structured 5 minute tutorial to familiarize themselves with

operation of the physical robot arm, and also given a direct

line of communication to people monitoring the robots to

ensure quick responses to unsafe user control.

Data collection. Data collection in simulation is straightfor-

ward, since the state of the simulator can be saved at each

timestep. From this minimal simulator state, all ground-truth

observations of interest can be reconstructed. In contrast,

data collection in the real world is much more unstructured.

Multiple sensor streams emit data at different rates. To

account for this, we leverage rosbag, a package built on

top of the Robot Operating System (ROS), that allows for

recording messages sent over concurrent publisher-subscriber

communication channels called topics.

IV. DATA COLLECTION

A. Task Design

We designed three robotic manipulation tasks for data

collection. These tasks were chosen with care - each task

requires the use of low-level dexterity and high-level rea-

soning in order to solve it - both of which can be provided

with a human in the loop. Furthermore, the solution space is

multimodal - there are several admissible ways to solve the

task for a given task instance. Consequently, there is inherent

freedom in our tasks, encouraging our diverse set of users to

experiment with different solution strategies.

Object Search. The goal of this task is to search for a

set of target objects within a cluttered bin and fit them

into a specific box. There are three target object categories:

plush animals, plastic water bottles, and paper napkins. The

workspace consists of a large cluttered bin containing a diverse

assortment of objects and three target boxes, one per category

of target object. At the start of each task instance, three target

objects of each category are mixed in among the clutter of the

box. A target category is randomly sampled and relayed to the

operator, who must use the robot arm to find all three objects

corresponding to the target category and place each item into

its corresponding hole. We further place the constraint that

objects can be grasped and moved around within the bin but

they cannot be placed outside the bin in any sort of staging

area - this adds to the challenging nature of the task.

The Object Search task requires human-level reasoning

to detect and search for the target items and dexterous

manipulation to dig through the bin, push objects out of

the way, pick up the target object successfully, and fit

the target object into the corresponding hole, making it a

good candidate for crowdsourcing. The objects also have

interesting properties - the paper napkins appear in crumpled

and unfolded configurations, and the crushed plastic water

bottles are challenging to detect and grasp due to their

translucence and arbitrary rigid shape. Furthermore, it is

a practical problem with industrial applications [6].

Tower Creation. In this task, an assortment of cups and bowls

are arranged on the table. The goal of the task is to create

the tallest tower possible by stacking the cups and bowls on

top of each other. This task requires physical reasoning over

the properties of each type of cup and bowl and thinking

about how to stack them on top of each other to maximize

height without sacrificing the stability of the tower.

We diversify the initial task configurations by sampling

a set of ten objects drawn from a total of 28 bowls in 7

varieties and 12 cups in 3 varieties. We also randomize the

initial configuration of the objects. This encourages diversity

in the demonstrations since users will not receive the same

set of objects in the same configuration, enforcing each

demonstration to be unique.

Laundry Layout. This task starts with a hand towel, a pair

of jeans, or a t-shirt placed on the table. The goal is to use

the robot arm to straighten the item so that it lies flat on the

table with no folds. On every task reset we randomly place

the item into a new configuration. This task was chosen for

the visual and physical reasoning skills necessary to unfold

and flatten the item. Solving it requires understanding the

current item configuration and how it will respond to different

types of contact.

B. Data Collection and Dataset Details

We collected our dataset using 54 different participants over

the course of 1 week. Every user participated in a supervised

hour of remote data collection, including a brief 5 minute

tutorial at the beginning of the session. Afterwards, they were

given the option to collect data without supervision for all

subsequent collection. The users who participated in our data

collection study collected the data from a variety of locations.

All locations were remote - no data collection occurred in

front of the actual robot arms.
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Fig. 4: Characterizing user skill improvement over time. Task completion times across users versus number of demonstrations of
experience (left), average effort exerted versus experience (middle), and average change in orientation versus experience (right) on Object
Search (top) and Laundry Layout (bottom). Together, these show that with experience, users learn to use more nuanced motion to complete
tasks faster and more efficiently. Task completion time drops steadily as experience increases. However, average effort exerted (measured by
the square L2 norms of phone translations) is largely invariant across experience, while phone orientation change increases with experience,
implying that users improve over time not by moving the phone faster, but rather by learning to enact more dexterous motions. Each
graph displays quartiles to show that changes are consistent across the entire population. The Tower Creation task was excluded from this
evaluation since most users insisted on using all five minutes to create their tower.

Fig. 3 shows our data collection setup. We collected

data on three Sawyer robot arms - each of which had a

front-facing webcam and a top-down Kinect depth camera

mounted in the workspace of the robot arm. We collected

RGB images from the front-facing RGB camera (which is

also the teleoperator video stream view) at 30Hz, RGB and

Depth images from the top-down Kinectv2 sensor also at

30Hz, and robot sensor readings such as joint and end effector

information, at approximately 100Hz.

Table I compares our dataset against other robot datasets

collected using humans. With over 111 hours of total robot

manipulation data in our dataset, our dataset is 1-2 orders of

magnitude larger than most other datasets. The number of

task demonstrations in our dataset also compares favorably

with the number of demonstrations in large datasets such as

MIME [34], but the tasks that we collected data on are more

difficult to complete, as they take on the order of minutes to

complete successfully, as opposed to seconds (see Fig. 5).

V. EXPERIMENTS: SYSTEM ANALYSIS

A. Quantitative User Performance Analysis

The contributing users had a wide range of skill level, as

seen in Fig. 5, but regardless of individual skill, we noticed

strong trends of skill improvement with experience. We ob-

served that users learned how to use the teleoperation control

system very quickly, and once they became comfortable with

it, they not only completed tasks faster, but more efficiently.

Users demonstrated a higher degree of dexterity as they gained

experience performing tasks.

Fig. 4 demonstrates quantitative results that corroborate

what we observed. Task completion times steadily decreased

as users gained experience doing the task. We also measured

average user exertion, estimated by the square L2 norms

of phone translations during control, and found it largely
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Fig. 5: User skill comparison. Average task completion time plotted
for all users. The distribution indicates a wide range of skill exhibited
across users on the Object Search and Laundry Layout tasks - more
skillful users are able to complete these tasks in less time. By
contrast, the uniform spread in times across the Tower Creation task
indicates that all users were persistent in using all five minutes to
create their tower.

invariant with respect to amount of experience, demonstrating

that faster completion times were not due to users simply

performing the same trajectory faster. By contrast, the

average phone orientation change increased with experience,

confirming that users learned to control the robot with more

dexterous motion, enabling them to complete the task faster.

B. Qualitative User Feedback

Motivated by a previous study on robot teleoperation

interfaces [19], we had each participant complete a NASA

TLX form upon completion of the study [13]. This self-

reported survey measured the participants’ perception on

mental demand, physical demand, temporal demand, perfor-

mance, effort, and frustration on a 21-point scale. The total

workload was computed as the sum of these averages, where

higher scores represent a higher workload on users. From

Table II, users found that the tower stacking task required

the most workload across all the metrics.
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TABLE II: NASA TLX Evaluation. Self-reported user evaluation
of the system.

Measure Object Search Tower Stacking Laundry Layout

Mental demand 12.2±3.7 13.2±4.4 9.3±5.3
Physical demand 11.1±4.0 11.8±4.7 9.6±4.6
Temporal demand 6.0±4.6 12.2±6.2 7.9±4.9
Performance 6.3±4.8 12.4±5.1 7.1±6.1
Effort 10.8±4.2 14.2±3.9 10.3±5.1
Frustration 7.5±5.0 13.1±5.2 7.3±5.4

Total Workload 53.9±11.2 76.9±12.2 51.5±12.8

VI. EXPERIMENTS: DATA ANALYSIS

In this section, we investigate properties of our dataset

that demonstrate the potential utility of the data for several

applications such as multimodal density estimation, video

prediction, reward function learning, policy learning and

hierarchical task planning.

A. Evaluating Object Search Task Complexity

One of the key novelties of the dataset we present is the

complexity of the reasoning necessary to plan a strategy for

solving the tasks and the actual dexterity necessary to perform

the finer details of manipulating the objects. We focus on

the Object Search task since there is a simple qualitative

measure to demonstrate the complexity of the task through

the start and end configurations of the bin. Fig. 6 shows the

start and end configurations of the bin over several successful

task demonstrations. The fact that these configurations vary

greatly is evidence that the operator needed to drastically

reorient the contents of the bin to find the objects of interest.

B. Diversity of task demonstrations and solution approaches

One of the benefits of collecting data from a set of 54

users on tasks with an unstructured solution space is that

every user has a unique approach to solve a given task

instance. Fig. 7 presents three demonstrations on the Laundry

Layout task that started with similar towel configurations

and ended successfully with the towel flat on the table. The

demonstration frames show that although the start and end

configurations are similar, the approach used to flatten the

towel are markedly different. For example, the user that

provided the top demonstration chose to pick one side of

the towel, place it down in a better configuration, then push

the remaining flap of the towel open to complete the task.

By contrast, the bottom demonstrator chose to grab a corner

of the towel and manipulate it through lifting and dragging

motions until the cloth was flat on the table.

Fig. 7 also presents three demonstrations on the Tower

Creation task that started with the same set of objects, but

resulted in three completely different towers. While both

towers were comparably high, the users demonstrated different

ways to stack the cups and bowls in order to build the tower.

The dataset that we collected contains many such instances

of multimodality and creative problem solving that stem from

the diversity of the humans that generated the data.

C. Inferring a Reward Signal from Demonstrations

Consider the problem of learning a policy to imitate

a specific video demonstration. Prior work [4, 33] has

approached this problem by learning an embedding space

Fig. 6: Object Search Task Complexity. The large difference
between start and end frames on the Object Search demonstrates
the significant amount of effort required to solve the task.

over visual observations and then crafting a reward function

to imitate a reference trajectory based on distances in the

embedding space. This reward function can then be used

with reinforcement learning to learn a policy that imitates the

trajectory. Taking inspiration from this approach, we trained

a modified version of Time Contrastive Networks (TCN) [33]

on Laundry Layout demonstrations and investigate some

interesting properties of the embedding space.

To address the large and diverse amount of data that

was collected, we made two important modifications to

the TCN algorithm. The original algorithm used a triplet

loss to encourage neighboring video frames to be close in

the embedding space; however, we found that applying the

original TCN algorithm to our dataset resulted in embeddings

with distances that were not meaningful for frames with larger

time separation in a demonstration. Learning an embedding

space that can tolerate frames with large temporal separation

is critical for our dataset, since our tasks are multi-stage and

our demonstrations are several minutes long.

In order to learn both high and low frequency temporal

similarity, we split each demonstration into chunks of uniform

size and use two separate triplet losses - an intra-chunk loss

that pushes neighboring frames from within the same chunk

of time together in the embedding space and an inter-chunk

loss that encourages frames from nearby chunks of time to

be close in the embedding space. We also added an auxiliary

loss to encourage terminal demonstration frames to be close

in the embedding space.

In Fig. 8, we consider the frame embeddings along a

single Laundry Layout demonstration. We plot the negative

L2 distance of the frame embeddings with respect to the

embedding of a target frame near the end of the video, where

the target frame depicts a successful task completion with

the towel lying flat on the table. The figure demonstrates

that distances in this embedding space with a suitable target

frame yield a reasonable reward function that could be used to

imitate task demonstrations purely from visual observations.

Furthermore, embedding distances capture task semantics

to a certain degree and could even be used to measure task

progress. For example, in frames 3 and 5, the towel is nearly

flat on the table, and the embedding distance to frame 6 is

correspondingly small. By contrast, in frames 2 and 4, the

robot is holding the towel a significant distance away from

the table, and the distance to frame 6 is correspondingly

large.
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Fig. 7: Diversity of Task Solutions. Three different demonstrations provided on the Laundry Layout task (left) and the Tower Creation
task (right) are shown above. The Laundry Layout demonstrations start and end with the same towel configuration across demonstrations
but users exhibited different solution strategies to solve the task. The Tower Creation demonstrations start with the same set of objects in
different configurations on the table but users chose to leverage the items in different ways, leading to three towers of roughly the same
height, with different structural composition. This showcases the diversity of solution strategies that are present in our dataset.

Fig. 8: Leveraging learned embedding spaces as a similarity
metric for imitation. We trained a custom variant of TCN [33]
to learn an embedding space over RGB images on the Laundry
Layout task. We plot the negative L2 embedding distance between
a target frame with a flat towel (the last frame) and all other frames
in a demonstrations. This distance provides a meaningful reward
function for imitation as well as a useful metric for task progress.

D. Behavioral Cloning

We also trained policies using Behavioral Cloning on the

Laundry Layout task by learning a mapping from RGB images

to robot joint positions. Our attempts to learn from the entire

dataset were ultimately unsuccessful due to the diverse nature

of the demonstrations, but we were able to achieve some

success by restricting the training data to demonstration

segments where the arm moves to a corner of the towel,

and lifts the towel up. Addressing the diversity of the dataset

for policy learning is left for future work.

VII. CONCLUSION

We introduced three challenging manipulation tasks: Object

Search, Tower Creation, and Laundry Layout. Solving each

of these tasks requires both higher-level reasoning to specify

what to accomplish and dexterous manipulation that answers

how to accomplish the necessary physical interactions. Each

task instance also admits many diverse solutions, making

these tasks amenable to crowdsourcing.

We presented the largest known crowdsourced teleoperated

robot manipulation dataset consisting of over 111 hours of

data across 54 users. The dataset was collected in 1 week on

3 Sawyer robot arms using the RoboTurk platform. We made

important extensions to the RoboTurk platform to enable

data collection on physical robots, including accounting for

additional delays in the remote teleoperation loop due to

physical robot actuation, ensuring operational safety of the

robots when being controlled by novices, and managing

large-scale data collection across multiple sensor streams. We

analyzed how the system allowed our participants to adapt

quickly to the phone control interface in order to collect

diverse, successful demonstrations on the three tasks. We

also presented a set of qualitative and quantitative results that

showcase the diversity and utility of the dataset. Our dataset

can be useful for several applications such as multimodal

density estimation, video prediction, reward function learning,

policy learning and hierarchical task planning.

Future work will be focus on two directions - improving

the platform and utilizing the dataset for policy learning.

Platform improvements include: (1) alleviating the need for

manual task resets by collecting data on reversible tasks (a

forward task and a reset task) so that remote operators can

reset the workspace and (2) developing a more structured

scheduling system for operators that ensures fair waiting

times for those in the queue. While our initial results suggest

that the dataset can potentially be used for both one-shot

imitation learning and direct imitation, further considerations

and innovations will be necessary to handle the inherent

diversity and multimodality of the solutions demonstrated.
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