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Abstract. Class-level dependencies model general relational statistics
over attributes of linked objects and links. Class-level relationships are
important in themselves, and they support applications like policy mak-
ing, strategic planning, and query optimization. An example of a class-
level query is “what is the percentage of friendship pairs where both
friends are women?”. To represent class-level statistics, we utilize Parametrized
Bayes nets (PBNs), a 1st-order logic extension of Bayes nets. The stan-
dard grounding semantics for PBNs is appropriate for answering queries
about specific ground facts but not appropriate for answering queries
about classes of individuals. We propose a random selection semantics
for PBNs, based on Halpern’s classic semantics for probabilistic 1st-
order logic [1], that supports class-level queries. Learning the parameters
for this semantics can be done using the recent relational BN pseudo-
likelihood measure [2] as the objective function. The parameter settings
that maximize this objective function are the empirical frequencies in
the relational data. A naive computation of the empirical frequencies of
the relations is intractable due to the complexity imposed by negated
relations. We render the computation tractable by using the fast Möbius
transform. Evaluation on four benchmark datasets shows that maximum
pseudo-likelihood provides accurate estimates at different sample sizes.

1 Introduction

Many applications store data in relational format, with different tables for enti-
ties and their links. Relational data introduces the machine learning problem of
class-level frequency estimation: building a model that can answer generic sta-
tistical queries about classes of individuals in the database [3]. For example, a
class-level query for a social network database may be “what is the percentage
of friendship pairs where both are women”? A movie database example would be
“what is the percentage of male users who have rated highly an action movie?”
A model of database statistics can be used for several applications:

Statistical 1st-order Patterns. AI research into combining 1st-order logic
and probability investigated in depth the representation of statistical pat-
terns in relational structures [1, 4]. Often such patterns can be expressed as
generic statements, like “intelligent students tend to take difficult courses”.



Policy making and strategic planning. A university administrator may wish
to know which program characteristics attract high-ranking students in gen-
eral, rather than predict the rank of a specific student in a specific program.
Maier et al. [5] describe several applications of causal-relational knowledge
for decision making. These causal relations reflect generic correlations in the
database.

Query optimization. A statistical model predicts a probability for given ta-
ble join conditions that can be used to infer the size of the join result [3].
Estimating join sizes (selectivity estimation) is used to minimize the size of
intermediate join tables [6].

Semantics. We focus on building a Bayes net model for relational statistics,
using the Parametrized Bayes nets (PBNs) of Poole [7]. The nodes in a PBN
are constructed with functors and 1st-order variables (e.g., gender(X ) may be
a node). The original PBN semantics is a grounding semantics where the 1st-
order Bayes net is instantiated with all possible groundings to obtain a directed
graph whose nodes are functors with constants (e.g., gender(sam)). The ground
graph can be used to answer queries about individuals, such as “if user sam

has 3 friends, female rozita, males ali and victor, what is the probability that
sam is a woman”? However, as pointed out by Getoor [8], the ground graph is
not appropriate for answering class-level queries because these are about generic
rates and percentages, not about any particular individuals.

We propose a new semantics for Parametrized Bayes nets that supports class-
level queries. The semantics is based on Halpern’s classic random selection se-
mantics for probabilistic 1st-order logic [1, 4]. Halpern’s semantics views state-
ments with 1st-order variables as expressing statistical information about classes
(or domains) of individuals. For instance, the claim “the percentage of friendship
pairs where both are women is 60%” could be expressed by the 1st-order formula

P (Gender(X ) = female,Gender(Y ) = female|Friend(X ,Y )) = 60%.

While we focus on PBNs, the random selection semantics can be applied to
any statistical-relational model whose syntax is based on 1st-order logic.

Learning. A standard Bayes net parameter learning method is maximum likeli-
hood estimation, but this method is difficult to apply for Bayes nets that repre-
sent relational data because the cyclic data dependencies in relations violate the
requirements of a traditional likelihood measure. We circumvent the limitations
of classical likelihood measures by using a relational pseudo-likelihood measure
for Bayes nets [2] that is well defined even in the presence of cyclic dependen-
cies. In addition to this robustness, the relational pseudo-likelihood matches the
random selection semantics because it is also based on the concept of random
instantiations. An estimator that chooses the parameters that maximize this
pseudo-likelihood function (MPLE), has a closed-form solution: the MPLE pa-
rameters are the empirical frequencies, as with classical i.i.d. maximum likelihood



estimation. Since MPLE depends only on the generic event frequencies in the
data, it can be viewed as an instance of lifted learning. Computing the empirical
frequencies for negated relationships is difficult, however, because enumerating
the complement of a relationship table is computationally infeasible. We show
that the fast Möbius transform [9] makes MPLE tractable, even in the case of
negated relationships.

Results. We evaluate MPLE on four benchmark real-world datasets. On complete-
population samples MPLE achieves near perfect accuracy in parameter esti-
mates, and excellent performance on Bayes net queries. The accuracy of MPLE
parameter values is high even on medium-size samples.

Contributions. Our main contributions for frequency modelling in relational data
are the following:

1. A new class-level semantics for graphical 1st-order models, derived from the
random selection semantics for probabilistic 1st-order logic.

2. Making the computation of frequency estimates tractable by computing
database statistics using the fast Möbius transform. This transform is a
general procedure for computing relational statistics that involve negated
links. It has application in Probabilistic Relational Models [10, Sec.5.8.4.2],
multi-relational data mining, and inductive logic programming models with
clauses containing negated relationships.

3. Evaluating the empirical accuracy of the Bayes net class-level models at
medium to large sample sizes.

4. We contribute to unification of instance-level and class-level relational prob-
abilities (defined in the next section) in two ways. (1) We show how the same
1st-order model can be used for both types of inference. (2) We show that
the same objective function is suitable for learning models for both types of
queries.

Paper Organization. We review background and notation in the next section.
Section 4 presents the random selection semantics for Bayes nets. Section 5
presents the fast Möbius transform for relational data. Simulation results are
presented in Section 6, showing the runtime cost of estimating parameters, and
evaluations of their quality by (a) comparison with the true population param-
eter values, and (b) inference on random queries.

2 Related Work

Class-level and Instance-level Relational Probabilities. Classic AI research es-
tablished a fundamental distinction between two types of probabilities associ-
ated with a relational structure [1, 4]. Class-level probabilities, also called type 1
probabilities are assigned to the rates, statistics, or frequencies of events in a
database. These concern classes of entities (e.g., students, courses, users) rather
than specific entities. Instance-level probabilities, also called type 2 probabilities



are assigned to specific, non-repeatable events or the properties of specific enti-
ties. Syntactically, class-level probabilities are assigned to formulas that contain
1st-order variables (e.g., P (Flies(X )|Bird(X )) = 90%, or “birds fly” with prob-
ability 90%), whereas instance-level probabilities are assigned to formulas that
contain constants only (e.g., P (Flies(tweety)) = 90%). There has been much
AI research on using Bayes nets for representing and reasoning both with class
probabilities [11] and instance probabilities [12]. Most statistical-relational learn-
ing has been concerned with instance probabilities: For instance, Probabilistic
Relational Models (PRMs) [10] and Markov Logic Networks (MLNs) [13] define
probabilities for ground instances using a grounding semantics.

Statistical Relational Models. To our knowledge, Statistical Relational Models
(SRMs) due to Getoor, Taskar and Koller [8], are the only prior statistical mod-
els with a class-level probability semantics. SRMs differ from PBNs and other
statistical-relational models in several respects. (1) The SRM syntax is not that
of first-order logic, but is derived from a tuple semantics [8, Def.6.3], which is
different from the random selection semantics we propose for PBNs. (2) SRMs
are less expressive: They cannot express general combinations of positive and
negative relationships [8, Def.6.11]. (3) The published learning algorithm for
SRMs uses information gain as a model selection score, not a pseudo-likelihood
[3].

Unified Learning for Type 1 and Type 2 Probabilities. Previous SRL work used
different models for the two basic types of probability query (SRMs for class-
level, template models for instance-level). In this paper we use PBNs and the
pseudo likelihood to learn models that are accurate for class-level probabilities.
Previous work used the same model class and objective function for learning
models that are accurate for instance-level probabilities [14, 2]. We believe that
a unified approach to learning for both relational probability types is an exciting
research direction for statistical-relational learning.

3 Background: Parametrized Bayes Nets

Our work combines concepts from relational databases and graphical models. As
much as possible, we use standard notation in these different areas. Parametrized
Bayes nets are a basic graphical model for relational data [7]. The syntax of PBNs
is as follows. We assume familiarity with Bayes nets and concepts such as CP-
table and I-map [15]. A functor is a function symbol or a predicate symbol.
Each functor has a set of values (constants) called the range of the functor.
There are two types of functor nodes: Boolean relationship functors that in-
dicate whether a relationship holds (e.g., Friend), and attribute functors that
correspond to the value of an attribute (e.g., Gender). To conform to statisti-
cal terminology, Poole refers to 1st-order variables as population variables. A
population variable X is associated with a population, a set of individuals,
corresponding to a type, domain, or class in logic. A functor random variable



or functor node is of the form f(X1, . . . ,Xk). In this paper we assume that
functor nodes contain 1st-order variables only (no constants). A Parametrized

Bayes Net is a Bayes net whose nodes are functor nodes. In the following we
often omit the prefix “Parametrized” and speak simply of Bayes nets. Figure 1
shows a PBN. The syntax of PBNs is similar to that of other directed relational
graphical models (cf. [7]). An instantiation or grounding for a set of variables
X1, . . . ,Xk assigns a constant ci from the population of Xi to each variable Xi.

The functor formalism is rich enough to represent an entity-relationship
schema via the following translation: Entity sets correspond to populations,
descriptive attributes to functors, relationship tables to Boolean functors, and
foreign key constraints to type constraints on the arguments of relationship pred-
icates. Figure 1 shows a Parametrized Bayes net and a simple relational database
instance.

Fig. 1. Left: An illustrative Parametrized Bayes Net. Friend(X ,Y ) is a relationship
node, the other three nodes are attribute nodes. Right: A simple relational database
instance.

4 Random Selection Semantics for Bayes Nets

For a single population, a distribution over population members induces a joint
distribution over their attributes (e.g., age, height, gender). Classic AI research
generalized the concept of single population frequencies to 1st-order logic using
the idea of a random selection [1, 4]. We provide a brief review in the context
of a functor language. For example, consider a probabilistic 1st-order statement
using the obvious abbreviations for the Bayes net of Figure 1:

P (Friend(X ,Y ) = T ,Gender(X ) = M ,Gender(Y ) = F ) = 1/4 . (1)



which assigns probability 1/4 to a sentence with free 1st-order variables. 1

To evaluate whether the statement (1) is true in a given interpretation D, the
random selection semantics assumes a distribution over the population/domain
associated with each free 1st-order variable. Assuming the independence of these
distributions, we obtain a joint distribution over the values of population vari-
ables X1, X2, . . . ,Xk; that is, a joint distribution over tuples of individuals. The
type 1 probability of a 1st-order statement is then the sum over all tuples that
satisfy the statement, weighted by the probability of each tuple. The statement
is true in an interpretation if it assigns the type 1 probability correct for the
interpretation.

In learning, an observed database instance D provides data only for a sub-
population. We define the observed database frequency, denoted by PD, of
a functor node assignment to be the number of instantiations of the popula-
tion variables in the functor nodes that satisfy the assignment in the database,
divided by the number of all possible instantiations. The database frequency
is the special case of the type 1 probability with a uniform distribution over
all observed population members in the database. For example, the probability
statement (1) is true in the database of Figure 1 given a uniform distribution
over users.

The random selection concept provides a class-level semantics for Parametrized
Bayes nets: if we view 1st-order variables X1, X2, . . . ,Xk as independent random
variables that each sample an individual, then a functor of the form f(X1, X2, . . . ,Xk)
represents a function of a random k-tuple. Since a function of a random variable
is itself a random variable, this shows how we can view functor nodes containing
1st-order variables as random variables in their own right, without grounding
the variables first. For example, using the obvious abbreviations for the BN of
Figure 1, the semantics of a joint assignment like

P (F (X ,Y ) = T ,G(X ) = M ,G(Y ) = M ,CD(X ) = T ) = 10%

is “if we randomly select two users X and Y , there is a 10% chance that they
are friends, both are men, and one is a coffee drinker”.

Random Selection Pseudo-Likelihood. Schulte [2, 16] proposed a way to measure
the fit of a Bayes net model to relational data that matches the random selection
semantics. The pseudo log-likelihood for a database D given a PBN B is the
expected log-likelihood of a random instantiation of the 1st-order variables in
the PBN with values individuals and values from the database D. For a fixed
database D and Bayes net structure, the parameter values that maximize the
pseudo-likelihood are the MPLE values. These are the conditional empirical
frequencies defined by the database distribution PD [2, Prop.3.1]. This result
is exactly analogous to maximum likelihood estimation for i.i.d. data. In the
remainder of the paper we evaluate MPLE parameter estimates. We begin with
a procedure for computing them.
1 The full syntax distinguishes between free variables and variables with a probabilistic

interpretation.



5 Computing Relational Frequencies

Initial work in SRL modelled the distribution of descriptive attributes given
knowledge of existing links. Database statistics conditional on the presence of
one or more relationships can be computed by table joins with SQL. More recent
models represent uncertainty about relationships with link indicator variables.
For instance, a Parametrized Bayes net includes relationship indicator variables
such as Friend(X ,Y ). Learning with link uncertainty requires computing suffi-
cient statistics that involve the absence of relationships. A naive approach would
explicitly construct new data tables that enumerate tuples of objects that are not

related. However, the number of unrelated tupes is too large to make this scalable
(think about the number of user pairs who are not friends on Facebook). Can
we instead reduce the computation of sufficient statistics that involve negated
relationships to the computation of sufficient statistics that involve existing (pos-
itive) relationships only? The classic Möbius parametrization for binary variables
provides an affirmative answer [17, p.239]. Consider a set b1, . . . , bm of binary
variables, where all marginal probabilities are available that involve only positive
values. Thus we have available probabilities such as P (b1 = 1); P (b1 = 1, b2 = 1);
P (b1 = 1, b3 = 1, bk = 1); etc. These joint probabilities are the Möbius param-

eters of the joint distribution. The Möbius inversion theorem entails that all

joint probabilities, involving any number of 0 values, can be computed as an
alternating sum of the Möbius parameters. We can apply this result for MPLE
as follows. Consider a PBN family containing m relationship nodes. We wish
to compute frequencies of the joint family assignments, from which conditional
probabilities are easily derived. The Möbius inversion theorem entails that each
joint frequency can be computed from joint frequencies that involve existing re-

lationships only.

The fast Möbius transform (FMT) is an optimal algorithm for converting
the Möbius parameters to a complete set of joint probabilities [9]. The FMT was
originally described using category theory with lattice structures. Our version
is adapted for joint probability tables (JP-tables). A JP-table is just like a
CP-table whose rows correspond to joint probabilities rather than conditional
probabilities. To represent a Möbius parameter, we allow relationship nodes to
take on the value ∗ for “unspecified”. For instance, suppose that the family nodes
are Int(S ), Reg(S ,C ), RA(S ,P). Then the Möbius parameter P (Int(S ) = 1 ) is
stored in the row where Int(S ) = 1 ,Registered(S ,C ) = ∗,RA(S ,P) = ∗. The
FMT uses a local update operation corresponding to the simple probabilistic
identity

P (σ,R, R = F ) := P (σ,R)− P (σ,R, R = T ) (2)

where σ is an attribute condition that does not involve relationships and R

specifies values for a list of relationship nodes. This shows how a probability
that involves k + 1 false relationships can be computed from two probabilities
that each involve only k false relationships, for k ≥ 0. The FMT initializes the
JP-table with the Möbius parameters without negated relationships, that is, all



Algorithm 1 The fast Möbuis transform for parameter estimation in a
Parametrized Bayes Net.

Input: database D; a set of functor nodes divided into attribute nodes A1, . . . , Aj

and relationship nodes R1, . . . , Rm.
Output: Joint Probability specifying the data frequencies for each joint assignment
to the input functor nodes.

1: for all attribute value assignments A1 := a1, . . . , Aj := aj do
2: initialize the JP-table with the Möbius parameters: set all relationship nodes to

either T or ∗; find joint frequencies with data queries.
3: for i = 1 to m do
4: Change all occurrences of Ri = ∗ to Ri = F .
5: Update the joint frequencies using (2).
6: end for
7: end for

relationship nodes have the value T or ∗. It then goes through the relationship
nodes R1, . . . , Rm in order, replaces at stage i all occurrences of Ri = ∗ with
Ri = F , and applies the local update equation for the probability value for the
modified row. At termination, all ∗ values have been replaced by F and the JP-
table specifies all joint frequencies. Algorithm 1 gives pseudocode and Figure 2
illustrates the FMT in a schematic example with two relationship nodes.

Complexity Analysis. Kennes and Smets [9] provide a thorough theoretical
analysis of the FMT. We summarize the main points. (1) The primary property
of the FMT is that it accesses data only about existing links, never about nonex-
isting links. A secondary but attractive property of FMT is that the number
of additions performed is m2m−1. A lower bound argument shows that this is
optimal [9, Cor.1]. (2) Kennes and Smets describe an “obvious algorithm” that
applies the local update to each row in the JP-table. The obvious algorithm also
uses only existing links, but requires O(3m) additions. 2 (3) Without a bound on
m, computing sufficient statistics in a relational structure is #P-complete [13,
Prop.12.4]. In practice, the number m of relationship nodes is small, 4 or less.

6 Evaluation

All experiments were done on a QUAD CPU Q6700 with a 2.66GHz CPU and
8GB of RAM. We evaluated the algorithm on real-world datasets. The datasets
and our code are available on the Web [18].

2 The obvious algorithm, but not the FMT, was rediscovered by Khosravi et al. and
presented as a conference poster at ILP 2009. This work was not included in the
proceedings or any other archival publication. For the case of a single relationship,
Getoor et al. [10] introduced a “1-minus trick”; the FMT generalizes this to the
multi-relational case.
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Fig. 2. The fast Möbius transform with m = 2 relationship nodes. For simplicity we
omit attribute conditions.

6.1 Datasets

We used four benchmark real-world databases, with the modifications by [14],
which contains details and references.

Mondial Database. A geography database. Mondial features a self-relationship,
Borders, that indicates which countries border each other.

Hepatitis Database. A modified version of the PKDD’02 Discovery Chal-
lenge database.

Financial A dataset from the PKDD 1999 cup.
MovieLens. A dataset from the UC Irvine machine learning repository.
To obtain a Bayes net structure for each dataset, we applied the learn-and-

join algorithm [14] to each database. This is the state-of-the-art structure learn-
ing algorithm for PBNs; for an objective function, it uses the pseudo-likelihood
described in Section 4. We also conducted experiments with synthetic graphs and
datasets. The results are similar to those on real-life datasets. We omit details
for lack of space.

6.2 Learning Times

Figure 1 shows the runtimes for computing parameter values. The Complement
method uses SQL queries that explicitly construct tables for the complement of
relationships (tables that contain tuples of unrelated entities), while the FMT
method uses the fast Möbius transform to compute the conditional probabilities.
The FMT is faster by orders of magnitude, ranging from a factor of 5–237.

6.3 Conditional Probabilities

To study parameter estimation at different sample sizes, we performed a set
of experiments to train the model on N% of the data and test on the other
(100 − N)% of the data. Conceptually, we treated each benchmark database
as specifying an entire population, and then estimated the complete-population
frequencies from partial-population data. A fractional sample size parameter is
uniform across tables and databases. We employed standard subgraph subsam-
pling [19, 14], which selects entities from each entity table uniformly at random



Table 1. Learning time results (sec) for the fast Möbius transform vs. constructing
complement tables. For each database, we show the number of tuples, and of parameters
in the fixed Bayes net structure.

Database Parameters #tuples Complement FMT Ratio

Mondial 1618 814 157 7 22
Hepatitis 1987 12,447 18,246 77 237
Financial 10926 17,912 228,114 14,821 15
MovieLens 326 82,623 2,070 50 41

Fig. 3. Error (absolute difference) in conditional probability estimates. Median (red
center line) and spread of error in the estimates of conditional probability parameters,
averaged over 10 random subdatabases and all parameters in a given BN.

	
  

and restricts the relationship tuples in each subdatabase to those that involve
only the selected entities. Subgraph sampling matches the random selection se-
mantics which is based on random draws from a population. It is applicable when
the observations include positive and negative link information (e.g., not listing
two countries as neighbors implies that they are not neighbors). The subgraph
method satisfies an ergodic law of large numbers in the sense that as the subsam-
ple size increases, the subsample relational frequencies approach the population
relational frequencies.

With increasing sample size, MPLE estimates approach the true value in all
cases. Even for the smaller sample sizes, the median error is close to 0, confirming
that most estimates are very close to correct. As the box plots show, the 3rd
error quartile of estimates is bound within 10% on Mondial, the worst case, and
within less than 5% on the other datasets.

6.4 Inference

The basic inference task for Bayes nets is answering probabilistic queries. If
the given Bayes net structure is an I-map of the true distribution, then correct
parameter values lead to correct predictions. Thus the performance on queries
has been used to evaluate parameter learning [20]. We randomly generate queries
for each dataset according to the following procedure. First, choose a target node
V 100 times, and go through each possible value a of V such that P (V = a) is the
probability to be predicted. For each value a, choose the number k of conditioning



variables, ranging from 1 to 3. Select k variables V1, . . . , Vk and corresponding
values a1, . . . , ak. The query to be answered is then P (V = a|V1 = a1, . . . , Vk =
ak).

As in [3], we evaluate queries after learning parameter values on the entire
database. Thus the BN is viewed as a statistical summary of the data rather than
generalizing from a sample. BN inference is carried out using the Approximate
Updater in CMU’s Tetrad program. Figure 4 shows the query performance for
each database. A point (x, y) on a curve indicates that there is a query such
that the true probability value in the database is x and the probability value
estimated by the model is y. The Bayes net inference is close to the ideal identity
line, with an average error of less than 1%.

Fig. 4. Query Performance: Estimated vs. true probability. The average error and
standard deviation are shown as well. Number of queries/average inference time per
query: Mondial, 506/0.08sec; MovieLens, 546/0.05sec; Hepatitis, 489/0.1sec; Financial,
140/0.02sec.

3/n Presentation Title At Venue 

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

!"
#$
%&'

$(
&)*

+$
,$
*-
$&

.,/$&0"("1"%$&2,$3/$*-4$%&

-." /0123"4521"-."

5$6"77%&
6710891"35:1012;1""
!#!!+"<="!#!$"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

!"
#$
%&'

$(
&)*

+$
,$
*-
$&

.,/$&0"("1"%$&2,$3/$*-4$%&

-." /0123"4521"-."

5674$8$*%&
6710891"
35:1012;1""
!#!!)"<="!#!!+"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

!"
#$
%&'

$(
&)*

+$
,$
*-
$&

.,/$&0"("1"%$&2,$3/$*-4$%&

-." /0123"4521"-."

56*74"8&
6710891"35:1012;1""
!#!!,"<="!#!!*"

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

!"
#$
%&
'
$(
&)*

+$
,$
*-
$&

.,/$&0"("1"%$&2,$3/$*-4$%&

-." /0123"4521"-."

24*"*-4"5&
6710891"35:1012;1"
!#!!,"<="!#!$)"

7 Conclusion

We introduced a new semantics for Parametrized Bayes nets as models of class-
level statistics in a relational structure. For parameter learning we utilized the
empirical database frequencies, which can be feasibly computed using the fast
Möbius transform, even for frequencies concerning negated links. In evaluation on
four benchmark databases, the maximum pseudo-likelihood estimates approach
the true conditional probabilities as observations increase. The fit is good even
for medium data sizes.

A direction for future work is to adapt more techniques from i.i.d. Bayes net
parameter learning, such as smoothing frequencies and incorporating uncertainty
in parameter estimates [20]. A theoretical understanding of estimator variance
would be desirable: we may adapt the asymptotic approximations of [20], or
apply graph estimator theory [19]. Halpern [1] showed that any instance-level
inference model can be used for class-level inference by using ground queries
that contains new constants only (e.g., random-student, random-course, and
random-prof). We plan to use this scheme to evaluate instance-level models,
such as Markov Logic Networks, for class-level queries.
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