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Abstract

Bayes nets (BNs) for relational databases are
a major research topic in machine learning
and artificial intelligence. When the database
exhibits cyclic probabilistic dependencies,
the usual Bayes net product formula does not
define valid inferences. In this paper we de-
scribe and evaluate a new approach to defin-
ing Bayes net relational inference in the pres-
ence of cyclic dependencies. The key idea is to
define the random regression log-probability
of a target node value (unnormalized) as
the expected log-probability (unnormalized)
associated with a random instantiation of
the node’s Markov blanket. We provide a
tractable closed form for random regression,
which is equivalent to a log-linear model,
but with the predictors scaled to be in-
stance frequencies of relational patterns (fea-
tures), rather than instance counts. Instance
counts are used in previous inference models
based on Markov networks. We carried out
an empirical comparison on five benchmark
databases with (i) weights as log-conditional
probabilities using maximum likelihood esti-
mates vs. (ii) general weights learned with
Markov net methods. Maximum likelihood
estimates took seconds to compute in com-
parison to hours for Markov net learning.
With the frequency scaling, predictive accu-
racy for the conditional probability weights
was competitive with the general weights.

1 Introduction

An important machine learning task is to use data to
build a generative statistical model that represents the
joint distribution of the random variables that describe
the application domain [1]. One of the most widely

used generative model classes are Bayes nets (BNs)
[2]. The most common approach to relational inference
with graphical models is knowledge-based model con-
struction (KBMC) [3, 4]: A first-order or class-level
model serves as a template, that is instantiated or
ground with the complete information in the database.
A major difficulty with KBMC for directed models is
that the instantiated model may contain cycles even if
the class-level model does not [5, 6, 7]. In the presence
of cycles, the usual Bayes net product formula does
not define valid probabilistic inferences. In this paper
we propose a new relational log-linear inference model
for Bayes nets that does not assume that the ground
model is acyclic. The main idea is to consider a ran-
dom instantiation of the class-level model, rather than
a complete instantiation as in KBMC.

Approach. The first step in our inference model
is to define the Markov blanket probabilities, which
specify the conditional probability of a ground target
node given an assignment of values to all other ground
nodes, or equivalently, given an assignment of values
to the Markov blanket of the target node. The sec-
ond step extends the Markov blanket probabilities to
a joint distribution for general inferences. It is well-
known from the theory of dependency networks that
Gibbs sampling can be used to define the extension
[8, 9, 10], so this paper focuses on defining the Markov
blanket distributions.

The key new idea in defining Markov blanket prob-
abilities is to consider a random instantiation of the
target’s node Markov blanket. A single grounding of a
class-level Bayes net contains no cycles, so the condi-
tional probability of a target node value, given a sin-
gle random instantiation of its Markov blanket, can be
defined using the standard Bayes net formula. The un-
normalized Markov blanket log-probability of a target
node, given an assignment of values to all other ground
nodes, is the expected value of the unnormalized log-
conditional probability associated with a random in-
stantiation of the Markov blanket. We refer to this



as the random regression probability of a target node
value. The random instantiation idea can be viewed as
an application of Halpern’s random selection probab-
listic semantics for first-order logic [11, 12].

Theoretical Analysis: Closed Form and Log-
linearity. We establish a closed form for random re-
gression that avoids constructing a ground network.
This result also provides a simple comparison with
standard Markov field log-linear models for relational
data, such as relational Markov networks [6] and
Markov Logic Networks [13]. Markov field models de-
fine a log-linear regression equation, where the features
or predictors are derived from the Markov blanket of
a target node. For instance, to predict the intelligence
y of a student, the model may use as predictive fea-
tures how many A grades she has received, how many
B grades, etc. The closed-form equation for random re-
gression is a log-linear equation, just as with Markov
field models, but with feature frequencies replacing fea-
ture counts. Based on this result, we show how dif-
ferent relational graphical models, such as Bayesian,
Markov, and dependency networks, can be compared
in terms of their corresponding regression equations.

Parameter Learning. A straightforward approach
to parameter learning for a log-linear model is to esti-
mate the Bayes net conditional probability parameters
and use the log-conditional probabilities as weights [5].
This approach is attractive because conditional proba-
bilities have an intuitive interpretation, and because its
computational cost scales well with both the size of the
dataset and the number of model parameters. How-
ever, using the Bayes net parameters with the count
model faces the balancing problem: Features with more
instances have exponentially more influence. Since the
Bayes net parameters are all on the same scale (log-
probability), smaller weights cannot sufficiently scale
down the impact of predictors with larger domains.
In contrast, random regression uses feature frequen-
cies, so the predictors are scaled to the common range
[0,1].

Empirical Evaluation. The structure of a model is
determined by a fixed Bayes net for a given database.
We learn the Bayes net by applying the learn-and-join
algorithm to five benchmark databases [14]. For each
Bayes net structure, we compare two types of log-linear
relational models: (1) Using counts as predictors vs.
(2) frequencies as predictors. We compare two different
methods for parameter learning: (1) Using the maxi-
mum likelihood estimates for the Bayes nets (empirical
conditional frequencies in the data), with their logs
as weights in the log-linear regression model, vs. (2)
weights optimized using Markov Logic Network meth-

ods. Using log-conditional probabilities as parameters
makes for much faster weight learning (seconds vs.
hours in our experiments). With log-conditional prob-
abilitiies, the frequency model outperforms the count
model on all databases (on the log-likelihood metric).
The predictive performance of log-conditional proba-
bilities is competitive with optimized weights; the com-
bination of log-conditional probabilities + frequency
predictors outperforms optimized weights on all but
one dataset.

While this paper focuses on Bayes net models, the dis-
tinction between counts vs. frequencies as predictors
can be explored in other log-linear relational models,
for example as a different form of potential function
for the recent functional gradient boosting approach
[10, 15].

Paper Organization. We describe further related
work. Then we present background: basic relational
graphical models and connections between them. The
next section defines the random regression, and re-
lates it to the frequency and count log-linear regres-
sion models. We discuss parameter estimation with
observed conditional probabilities. Empirical evalua-
tion compares the frequency and count models on five
benchmark databases.

Contributions. The main contributions of this pa-
per to relational learning may be summarized as fol-
lows.

1. A new log-linear regression model for Bayes nets
defined in terms of random instantiations of the
Markov blanket of the target node. This model is
well-defined even in the presence of cyclic depen-
dencies.

2. A closed form for the random regression model.
This allows fast computation of the model’s pre-
dictions, and provides a straightforward com-
parison with state-of-the-art log-linear relational
models: Whereas previous log-linear models use
feature counts as predictors, the random regres-
sion model scales counts to be frequencies.

3. Experiments indicate that the random regression
model, with quickly computed maximum likeli-
hood estimates, offers predictive performance that
is competitive with a general log-linear model us-
ing optimized weights.

2 Related Work

Moralization Methods. Richardson and Domingos pro-
pose converting a Bayes net to a Markov Logic net-
work using moralization, with log-conditional proba-
bilities as weights [5]. This is also the standard Bayes



net conversion recommended by the Alchemy system
[16]. The moralization method is equivalent to our log-
linear model with counts. Khosravi et al. [14] follow the
moralization approach for the model structure, but do
not use log-probabilities as parameters for inference.
To our knowledge, our experiments are the first that
evaluate the moralized Bayes net structure with log-
probability weights.

Natarajan et al. [17] consider moralization with Bayes
nets that have been augmented with combining rules
for mapping probabilities obtained from multiple par-
ent instances to a single one. In contrast, we consider
tabular Bayes nets whose parameters are CP-table en-
tries only. Combining rules do not generally lead to
log-linear models.

Scaling Predictors. Scaling predictors to the [0,1] range
has been previously applied in a log-linear classifica-
tion model [18]. To our knowledge, scaling has not
been applied for inference in the generative context.
Variants of the Markov net pseudo-likelihood have
been proposed that include scaling factors, such as the
Weighted Pseudo Log-Likelihood [13] and the random
selection pseudo-likelihood [11]. The key difference is
that these scaling factors are used only during learn-
ing to ensure that the learning algorithm optimizes
parameters sufficiently for features with low counts.
In contrast, we use the scaling parameters during in-
ference.

The frequency model uses both global shared parame-
ters (conditional probabilities) and local scaling factors
that depend on the individual target node. Combining
rules like the arithmetic mean [17] similarly combine
global parameters with a local scaling factor. Our fre-
quency model uses the geometric mean rather than
the arithmetic mean. To our knowledge, the geometric
mean has not been used in Bayes net models with re-
lational data. Another difference with combining rules
is that we apply scaling to the entire Markov blanket
of the target node, whereas a Bayes net combining rule
applies only to the parents of the target node.

Random Selection Pseudo-Likelihood. Schulte uses the
expected log-likelihood associated with a random
grounding to define a generative pseudo-likelihood
measure for a first-order Bayes net and given input
database [11]. In this work we use the random ground-
ing idea discriminatively to define a regression equa-
tion for Markov blanket probabilities.

3 Background: Relational Graphical
Models

With respect to a graphical model, we interchangeably
refer to its nodes and its variables. We use vector nota-

tion for lists of variables/nodes and for lists of values
assigned to them, e.g., P (X1 = x1, . . . , Xn = xn) ≡
P (X = x).

3.1 Graphical Models

We consider graphical models with discrete random
variables only. A Bayes net (BN) is a pair 〈G,θG〉
where θG is a set of parameter values that specify the
probability distributions of children conditional on in-
stantiations of their parents, i.e. all conditional prob-
abilities of the form

θijk ≡ P (vi = aik|PAi = paij),

where aik is the k-th possible value of node i and paij

is the j-th possible configuration of the parents of vi.
The conditional probabilities are specified in a condi-
tional probability table for variable vi or CP-table.
The Markov blanket of a BN node Yi comprises the
set of childreni, parentsi and co-parentsi that share a
child with node Yi. The unnormalized Markov blan-
ket classification equation [19, Ch.14.5.2] is given
by

P̃ (Yi = y|X = x) = P (Yi = y|pai)·
∏

Xj∈childreni

P (Xj = y|paj)

(1)

where X is the set of all nodes other than Yi.

A Markov network structure is an undirected graph.
For each clique C in the graph, a clique potential
function ΨC specifies a nonnegative real number for
each possible assignment of values to the clique.

A dependency network structure is a directed
graph; cycles are allowed [8, 9, 10]. The parameters are
conditional probabilities of each node, given its Markov
blanket. Dependency networks are like Markov net-
works in that conditional probabilistic independence
corresponds to graph separation. They are like Bayes
nets in that the parameters are conditional probabili-
ties.

3.2 Graphical Models for Relational Data

We follow the original presentation of Parametrized
Bayes Nets (PBNs) due to Poole [20]. A functor is a
function symbol or a predicate symbol. In this paper
we discuss only functors with a finite range of possible
values. A parametrized random variable or func-
tor node is of the form f(τ1, . . . , τk) = f(A) where
f is a functor and each τi is a first-order variable Ai

or a constant ai of the appropriate type for the func-



tor.1 If a functor node f(τ ) contains no variable, it is
a ground node. An assignment to a ground node of
the form f(τ ) = a, where a is a constant in the range
of f , is a ground literal [21]. A population is a set
of individuals, corresponding to a domain or type in
logic. Each first-order variable A is associated with a
population. An instantiation or grounding for a set
of variables A1, . . . , Ak assigns to each variable Ai a
constant from the population of Ai.

A Parametrized (Bayes, Markov, Dependency) Net-
work is a (Bayes, Markov, Dependency) Network
whose nodes are functor nodes. We usually omit the
prefix “Parametrized”. Figure 1 shows a simple rela-
tional database and Figure 2 shows a Parametrized
Bayes net for this relational schema. A database in-
stance specifies a unique value for each ground node;
we denote such a joint assignment by V = v. For in-
stance, the database in Figure 1 specifies the value M
for the ground node gender(sam), and the value T
for the ground node Friend(anna, sam). We use the
following notation.

– Fijk is the family state that expresses that func-
tor node fi is assigned its k-th value, and the state
of its parents is assigned its j-th value.

– nijk(V = v) is the number of groundings of Fijk

that evaluate as true for a given complete assign-
ment of values (= database instance).

– pijk(V = v) is the frequency of the family state
in the database, that is, the number of groundings
that evaluate as true, over the number of possible
groundings.

To illustrate, let V = v be the ground node as-
signment corresponding to the database instance in
Figure 1. Also, choose Fijk to be the assignment
gender(X ) = M , gender(Y ) = F ,Friend(X ,Y ) = T .
Then nijk(V = v) = 2, and pijk(V = v) = 2/9 = 1/3.

Recursive dependencies (autocorrelations) are repre-
sented in a PBN by “copies” of the functors. Thus the
structure gender(X ) → gender(Y ) ← Friend(X ,Y )
in Figure 2 represents an association between the gen-
der of a user and that of his/her friends. We assume
that the Bayes net is in main functor format [22]: for
each functor f , there is a main functor node that is the
only f -node with parents. In the example, gender(X )
is the main functor, and gender(Y ) is an auxilliary
functor used only for representing the recursive de-
pendency. While the existence of a main functor may
seem like a strong assumption, Schulte et al. show that
under a mild ordering condition on the BN structure,

1 We use the term “functor node”, for brevity and to avoid
confusion with the statistical sense of “parametrized”,
meaning that values have been assigned to parameters.
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Fig. 1. A simple relational database instance.
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Fig. 2. A Parametrized Bayes Net with some CP-table en-
tries. CP-table entries are chosen for illustration and are
not related to the data in Figure 1.

for every PBN B not in main functor format, there is
an equivalent main functor Bayes net B′ that has the
same ground graph [22].

Model Conversions. Bayes nets can be converted
to Markov nets through the standard moralization
method: connect all spouses that share a common
child, and make all edges in the resulting graph undi-
rected. Thus each family in the Bayes net becomes
a clique in the moralized structure. For each state of
each family clique, we define the clique potential in
the Markov net to be the conditional probability of
the child given its parents.

Bayes nets can also be converted to dependency nets
[8]. For each node Xi, and each node Xj in the Markov
blanket of Xi, add a directed edge Xj → Xi. The
conditional probability parameters are given by the
Markov blanket equation (1).

4 Random Regression

Let Y = f(a1, . . . , ak) be a target ground node instan-
tiating functor node f(A1, . . . , Ak). The regression
graph for Y is the partially ground PBN BY that
results by substituting ai for Ai in functor node Y
and in its Markov blanket. This is illustrated in Fig-



ure 3. If there is more than one functor node with f ,
we use the main functor node (Sec. 3.2). Given a tar-
get node value y and an assignment X = x of values
to all ground nodes other than Y , random regression
is defined by the following steps.

1. Let A1, . . . , Ak be a list of all first-order variables
that occur in the Markov blanket of target node
Y in the regression graph for Y .

2. Select an instance (constant) ai from the popula-
tion of Ai, for each i = 1, . . . , k; the selections are
random, independent, and uniform. Replace each
node in the Markov blanket with the correspond-
ing ground node.

3. Using the values assigned to the ground nodes in
the database, apply the Bayes net Markov blanket
equation (1) to compute the factor product for Y ;
this defines a log-sum for the random instantiation
ai. The expected value of this log-sum is the ran-
dom regression value ln(P̃ r(Y = y|X = x)).
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Fig. 3. The regression graph for the target node
gender(sam) derived from the Bayes net of Figure 2 by
substituting sam for X.

Including irrelevant predictors leads to bad predic-
tions, so statistical-relational models restrict edges in
the ground model to relevant predictors only [20]. In
our examples and experiments below, we take the rel-
evance conditions to be the existence of a link, so we
only consider instances of the Markov blanket that are
related to the target node. Table 1 illustrates a sample
computation of a random regression for predicting the
gender of Sam given the database instance of Figure 1.

5 Random regression and Log-linear
Regression: The Frequency Model

Random regression sums over the set of all ground
functor nodes in the Markov blanket, which increases
exponentially with the number of first-order variables
in the Markov blanket. Frequency regression provides
an equivalent formula that sums over all non-ground
functor nodes in the Markov blanket. The frequency
regression equation is given by

Table 1. Computing the random regression for target node
node value gender(sam) = F . We use obvious abbrevia-
tions for functors. Each friend selection defines an instan-
tiation of the Markov blanket of the target node with two
associated factors.

Grounding Factor 1 Factor 2 Log-Product

Y = anna
P (cd(sam) = T |g(sam) = F )
= .7

P (g(sam) = F |g(anna) = F,
Fr(sam, anna) = T ) = .6

ln(.7× .6)
= -0.87

Y=bob
P (cd(sam) = T |g(sam) = F )
= .7

P (g(sam) = F |g(bob) = M,
Fr(sam, bob) = T ) = .4

ln(.7× .4)
=-1.27

Average -1.07

ln(P̃ (Y = y|X = x)) =
∑
ijk

pYijk(X = x, Y = y) ln(θijk).

(2)

Here and elsewhere the superscript Y indicates that
the notation is used with reference to the regression
graph for target node Y . The summation is over Y ’s
Markov blanket in the regression graph, so the in-
dex i ranges over the target node and its children.
Figure 4 provides an example computation of fre-
quency regression. Random regression (Table 1) gives
the same value −1.07 = ln(0.34) as frequency regres-
sion for the unnormalized conditional log-likelihood of
gender(sam) = F . The next proposition shows that
this equivalence holds in all cases. We omit the proof
due to space constraints.
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Fig. 4. The computation of the unnormalized Markov
blanket probability for the gender of Sam, for the count
model (left) and the frequency model (right). The fre-
quency model assigns higher weight to the factor that rep-
resents the coffee drinking of Sam. Notice that ln(0.34) =
−1.07, so the log-probability defined by the frequency mod-
els agrees with the log-probability defined by random re-
gression.

Proposition 1. The frequency regression value for a
target node (Equation (2)) equals the random regres-
sion value.

We remark that this result applies to random regres-
sion with any graphical model based on a first-order
template, not only Bayes nets. The random regres-
sion inference model can be interpreted in terms of



a ground dependency network, whose graph structure
is given by converting the Bayes net to a dependency
network (Sec. 3.2), and whose conditional probability
parameters are given by random regression.

6 Log-linear Regression: The Count
Model

Frequency regression has a simple relationship to the
standard log-linear regression equation associated with
Markov random fields. This regression equation is
given by

ln(P̃ (Y = y|X = x)) =
∑
ijk

nYijk(X = x, Y = y) ln(θijk).

(3)

Since Equation 3 uses the family counts nijk rather
than the family frequencies pijk, we refer to it as the
count equation. To see the relationship with Markov
random fields, consider the Parametrized Markov net
M obtained by moralizing the Parametrized Bayes net
(Sec. 3.2). The count equation is obtained by applying
the standard Markov field regression equation to the
grounding of M [13]. In graphical terms, the equation
is the product of all clique potentials in which the tar-
get node participates; see Figure 4. Count regression is
a natural comparison point to random regression due
to their similarity.

In the count regression equation (3), Markov blan-
ket components with many groundings have exponen-
tially more influence. The frequency model balances
the scales of the predictor variables, whose common
range is [0,1]. In terms of the factor products defined
by exponentiating the log-linear equations, the count
equation multiplies together all ground Markov blan-
ket factors, whereas the frequency equation first com-
putes the geometric mean of the ground factors asso-
ciated with each functor node in the Markov blanket,
then multiplies these geometric means. Figure 5 sum-
marizes the theoretical connections between graphical
models and regression equations.

Inference. Assuming complete data, the regression
equations can be evaluated in closed-form for condi-
tional inference. We outline how the regression mod-
els can be extended to general joint inferences. For
the count model, Markov logic network inference algo-
rithms can be used after moralization, as in [23, 14].
Heckerman et al. [8] show that applying Gibbs sam-
pling to a dependency network defines a stationary
joint distribution, hence can be used to answer general
queries based on random/frequency regression. Their
ordered pseudo-Gibbs sampler has been lifted to the
relational setting [24]. Since the form of the frequency
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Fig. 5. Connections between graphical models and log-
linear regression equations. Applying random regression di-
rectly to a Parametrized Bayes net leads to the frequency
model Proposition 1. Converting the Bayes net to a Markov
net leads to the count model. Converting the Bayes net to
a dependency network leads to the frequency model if the
geometric mean is used to combine Markov blanket con-
ditional probabilities (Eq. 1). Using the product of condi-
tional probabilities instead leads to the count model.

equation is very similar to that of the count model, an
alternative is to adapt MLN inference methods devel-
oped for the count model.

7 Parameter Learning With Bayes net
Maximum Likelihood Values

Our experiments evaluate using the empirical con-
ditional frequencies as parameters in the Bayes net
model:

θ̂ijk =
nijk(V = v)∑
k nijk(V = v)

.

We believe that these estimates are well motivated by
the following theoretical and practical considerations.

Maximum Likelihood Solution. The random selection
pseudo-likelihood for a Bayes net is the natural gener-
ative counterpart of random regression [11]. This mea-
sure is the expected log-likelihood of a random instan-
tiation of all first-order variables in the Bayes net. The
pseudo-likelihood is maximized by the conditional fre-
quencies θ̂ijk in the database [11, Prop.3.1]. This result
is a counterpart to the standard maximum likelihood
solution for i.i.d. propositional data.

Interpretability. The weight/clique potential parame-
ters of undirected models are often difficult to interpret
for users [2]. This is especially the case when weights
are learned from data, which can reflect complex in-
teractions between weights assigned to different local
cliques. In contrast, a Bayes net parameter can be in-
terpreted as a conditional probability, and reflects local
statistics restricted to a parent-child constellation.

Scalability. Using frequency estimates can be viewed
as a type of lifted learning, by which we mean using
only the sufficient statistics in a relational database
rather than an iteration over ground facts. The com-



putational cost scales well in both the size of the data
and the number of parameters in the model.

8 Evaluation

We first discuss the datasets used, then the systems
compared, finally the comparison metrics. We used
5 benchmark real-world databases. For more details
please see the references in [14] and on-line sources
such as [25].

MovieLens Database. This is a standard dataset from
the UC Irvine machine learning repository.

Mutagenesis Database. This dataset is widely used
in ILP research. It contains information on Atoms,
Molecules, and Bonds between them. We use the dis-
cretization of [14].

Hepatitis Database. This data is a modified version
of the PKDD02 Discovery Challenge database. The
database contains information on the laboratory ex-
aminations of hepatitis B and C infected patients.

Mondial Database. This dataset contains data from
multiple geographical web data sources. We followed
the modification of [26], and used a subset of the tables
and features for fast inference.

UW-CSE database. This dataset lists facts about the
Department of Computer Science and Engineering at
the University of Washington (UW-CSE), such as en-
tities (e.g., Student, Professor) and their relationships
(i.e. AdvisedBy, Publication). The dataset was ob-
tained by crawling pages in the department’s Web site
(www.cs.washington.edu).

8.1 Performance Metrics.

We use 3 performance metrics: Learning Time, Ac-
curacy (ACC), and Conditional log likelihood (CLL).
ACC and CLL have been used in previous studies of
MLN learning [27, 14]. The CLL of a ground atom in
a database is given by the log of the regression equa-
tion; for a database we report the average CLL over
all atoms in the test set. To define accuracy, we ap-
ply inference to predict the probability of an attribute
value, and score the prediction as correct if the most
probable value is the true one. For ACC and CLL the
values we report are averages over all predicates that
represent descriptive attributes. We do not use Area
under Curve, as it mainly applies to binary values,
and most of the attributes in our dataset are nonbi-
nary. We evaluate the learning methods using 5-fold
cross-validation as follows. We formed 5 subdatabases
for each by randomly selecting entities from each en-
tity table and restricting the relationship tuples in each
subdatabase to those that involve only the selected en-

tities (subgraph sampling [28, 14]). The models were
trained on 4 of the 5 subdatabases, then tested on the
remaining fold. We report the average score over the
5 runs, one for each fold.

8.2 Comparison Systems.

All experiments were done on a QUAD CPU Q6700
with a 2.66GHz CPU and 8GB of RAM. Our code and
datasets are available on the world-wide web [25]. We
applied the learn-and-join algorithm to learn a Bayes
net structure for each database [14]. A limitation of
the current learn-and-join algorithm is that it learns a
generative model over attributes given link structure,
so our evaluation considers only queries whose target
are attributes, not links [29, 14].

Parameter learning for general weights proceeds in two
steps as in [14]: (1) Convert the Parametrized Bayes
nets to Markov Logic Networks, using moralization,
which adds a conjunctive clause for each family state
Fijk [5]. We declared attribute predicates as functional
as recommended by the Alchemy Group [16]. (2) A
Markov net model uses a general weight wijk in place
of ln(θijk) derived from a conditional probability. To
learn the wijk weights, we applied the default weight
training procedure [30] of the Alchemy package [31].

Inference is performed by evaluating the count resp.
frequency regression equation. We employ exact in-
ference rather than approximate inference (e.g., MC-
SAT) to avoid conflating the impact of the inference
model with the impact of the inference implementa-
tion. We conducted experiments with MC-SAT and
the results were similar. We compared the following
approaches.

MBN As described above, the Bayes net structure is
converted to an MLN using moralization, weights
learned using Alchemy [14]. Inference uses count
regression. This is the state-of-the-art method for
log-linear prediction with Bayes nets, and there-
fore our baseline comparison.

CP+Count Parametrizes the Bayes net with the em-
pirical conditional probabilities and uses count re-
gression.

CP+Frequency Parametrizes the Bayes net with
the empirical conditional probabilities and uses
frequency regression.

8.3 Results.

All results are averages from 5-fold cross validation,
over all attributes in the database.

Learning Times. Table 2 shows runtime results for
parameter learning. We see clear scalability advantages



for the maximum likelihood conditional probability es-
timates: they take seconds to compute, whereas the
local search method requires as much as 10 hours in
the worst case (Hepatitis).

Table 2. A comparison of runtime (seconds) required
for parameter learning with a fixed Bayes net structure.
The Bayes net methods use the observed conditional fre-
quencies. The Markov net methods use Alchemy’s default
weight learning. Database sizes are specified by the number
of tuples and the number of ground atoms.

Dataset Bayes Net (s) Markov Net (s) #tuples #Ground atoms #Parameters
UW 2 5 2099 3380 125

Mondial 3 90 814 3366 575
MovieLens 8 10800 82623 170143 327

Mutagenesis 3 14400 15218 35973 880
Hepatitis 3 36000 12447 71597 793

Predictive Accuracy. Table 3 compares the log-
likelihood score of the methods, and Table 4 their accu-
racy score. Figure 6 averages performance over all five
databases to provide a simple visual summary of our
findings. We first discuss the frequency vs. count mod-
els, and then compare CP weights with the Markov
net weights.

Table 3. Conditional log-likelihood comparison of the
Bayes net parameters (cp+) with the Markov net parame-
ters (mbn), which are general weights. MBN is the previous
state-of-the-art baseline method.

Method UW Mondial MovieLens Mutagenesis Hepatitis
mbn -0.44 ± 0.07 -1.28 ± 0.07 -0.79 ± 0.03 -0.91 ± 0.09 -1.18 ± 0.26

cp+count -0.42 ± 0.05 -1.36 ± 0.11 -1.10 ± 0.16 -0.77 ± 0.03 -1.20 ± 0.07
cp+freq -0.41 ± 0.04 -1.34 ± 0.09 -0.71 ± 0.01 -0.73 ± 0.04 -1.07 ± 0.10

Table 4. Accuracy score of the Bayes net parame-
ters (cp+), which are conditional probabilities, with the
Markov net parameters (mbn). Accuracy is the percentage
of correctly predicted values in the test data.

Method UW Mondial MovieLens Mutagenesis Hepatitis
mbn 80.25% ± 0.05 43.81% ± 0.04 59.71% ± 0.02 61.49% ± 0.02 51.01% ± 0.02

cp+count 80.89% ± 0.06 44.70% ± 0.04 61.93% ± 0.02 66.95% ± 0.03 55.12% ± 0.02
cp+freq 81.01% ± 0.06 44.59% ± 0.04 65.14% ± 0.01 66.96% ± 0.03 54.79% ± 0.02

Frequency vs. Count Model. CLL. Using fre-
quencies rather than counts improves the conditional
log-likelihood score for the CP model, substantially
on MovieLens and Hepatitis (by 0.4 resp. 0.13 log-
likelihood units). Whereas accuracy is a 0-1 loss func-
tion, CLL is continuous, so we expect the balancing of
factors to have more impact.
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Fig. 6. Performance on conditional log-likelihood against
time, averaged over all five benchmark databases. Com-
pared to the Markov Logic methods, Bayes net parameter
learning takes essentially no time.

Accuracy. The count and frequency models are close,
except for MovieLens, where the frequency method
has a 3% advantage. MovieLens is an especially un-
balanced set because the number of ratings varies from
movie to movie and user to user. Also, there are gener-
ally many more users rating a given movie than movies
rated by a given user.

Bayes net vs. Markov net parameters. Bayes
net weights are competitive with the optimized weights
with both regression equations.

CLL. The CP+frequency model scores substantially
better than the Markov net weights on Mutagene-
sis, Hepatitis and MovieLens (by 0.18, 0.11, 0.08 log-
likelihood units) but worse on Mondial (0.06 differ-
ence).

Accuracy. The CP+frequency models have a slightly
higher score than the Markov net weights, with the
biggest differences on MovieLens (5%) and Hepatitis
(4%).

We also performed experiments using the Markov net
weights together with the frequency model. There is
little difference between the Markov model with counts
and frequencies. We hypothesize that this is because
the optimized Markov model weights include a scaling
component. This hypothesis is confirmed by the scal-
ing components of the weights directly; we omit the
details due to space constraints.

Experimental Conclusions. Compared to Markov
Logic parameter learning, Bayes net parameter learn-
ing is very fast. The Bayes net parameters were com-
petive with the Markov Logic parameters in terms of
predictive performance. Using Bayes net parameters
with random/frequency regression outperformed the
Markov parameters on all but one dataset on our main
metric (CLL). Comparing Bayes net parameters us-
ing the frequency vs. count regression, the frequency
model has better performance on all datasets on CLL.
Together with our analysis of the balancing problem,



the empirical findings make a good case for recom-
mending the frequency model over the count model
when the CP parameters are used.

9 Conclusion and Future Work

This paper considered an inference model for Bayes
nets applied to linear data, that is well defined in
the presence of cyclic dependencies. The key idea is
to consider the expected log-linear regression value
from a random instantiation of a node’s Markov blan-
ket. We provided an equivalent closed form defini-
tion that shows that random regression is equivalent
to a log-linear model, whose predictors are scaled to
be frequencies in the range [0,1]. We compared ran-
dom regression with standard log-linear models, using
both the empirical conditional frequencies and weights
learned by local optimization. The log-conditional
probabilities are much faster to compute, typically
seconds vs. hours. The predictive performance of log-
conditional probability weights was competitive with
optimized regression weights, in fact superior on all
but one dataset.
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