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Abstract

A key technical challenge in performing 6D object pose

estimation from RGB-D image is to fully leverage the two

complementary data sources. Prior works either extract in-

formation from the RGB image and depth separately or use

costly post-processing steps, limiting their performances in

highly cluttered scenes and real-time applications. In this

work, we present DenseFusion, a generic framework for

estimating 6D pose of a set of known objects from RGB-

D images. DenseFusion is a heterogeneous architecture

that processes the two data sources individually and uses a

novel dense fusion network to extract pixel-wise dense fea-

ture embedding, from which the pose is estimated. Further-

more, we integrate an end-to-end iterative pose refinement

procedure that further improves the pose estimation while

achieving near real-time inference. Our experiments show

that our method outperforms state-of-the-art approaches in

two datasets, YCB-Video and LineMOD. We also deploy our

proposed method to a real robot to grasp and manipulate

objects based on the estimated pose. Our code and video

are available at https://sites.google.com/view/densefusion/.

1. Introduction

6D object pose estimation is the crux to many important

real-world applications, such as robotic grasping and ma-

nipulation [7, 35, 44], autonomous navigation [6, 11, 42],

and augmented reality [19, 20]. Ideally, a solution should

deal with objects of varying shape and texture, show robust-

ness towards heavy occlusion, sensor noise, and changing

lighting conditions, while achieving the speed requirement

of real-time tasks. The advent of cheap RGB-D sensors

has enabled methods that infer poses of low-textured ob-

jects even in poorly-lighted environments more accurately

than RGB-only methods. Nonetheless, it is difficult for ex-

isting methods to satisfy the requirements of accurate pose

estimation and fast inference simultaneously.

Classical approaches first extract features from RGB-D

data and perform correspondence grouping and hypothesis

verification [3, 12, 13, 15, 26, 33, 38]. However, the re-
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Figure 1. We develop an end-to-end deep network model for 6D

pose estimation from RGB-D data, which performs fast and accu-

rate predictions for real-time applications such as robot grasping

and manipulation.

liance on handcrafted features and fixed matching proce-

dures have limited their empirical performances in presence

of heavy occlusion and lighting variation. Recent success

in visual recognition has inspired a family of data-driven

methods that use deep networks for pose estimation from

RGB-D inputs, such as PoseCNN [41] and MCN [16].

However, these methods require elaborate post-hoc re-

finement steps to fully utilize the 3D information, such

as a highly customized Iterative Closest Point (ICP) [2]

procedure in PoseCNN and a multi-view hypothesis ver-

ification scheme in MCN. These refinement steps cannot

be optimized jointly with the final objective and are pro-

hibitively slow for real-time applications. In the context of

autonomous driving, a third family of solutions has been

proposed to better exploit the complementary nature of

color and depth information from RGB-D data with end-

to-end deep models, such as Frustrum PointNet [23] and

PointFusion [42]. These models have achieved good per-

formances in driving scenes and the capacity of real-time

inference. However, as we demonstrate empirically, these

methods fall short under heavy occlusion, which is common

3343



in manipulation domains.

In this work, we propose an end-to-end deep learning ap-

proach for estimating 6-DoF poses of known objects from

RGB-D inputs. The core of our approach is to embed and

fuse RGB values and point clouds at a per-pixel level, as

opposed to prior work which uses image crops to compute

global features [42] or 2D bounding boxes [23]. This per-

pixel fusion scheme enables our model to explicitly rea-

son about the local appearance and geometry information,

which is essential to handle heavy occlusion. Furthermore,

we propose an iterative method which performs pose re-

finement within the end-to-end learning framework. This

greatly enhances model performance while keeping infer-

ence speed real-time.

We evaluate our method in two popular benchmarks for

6D pose estimation, YCB-Video [41] and LineMOD [12].

We show that our method outperforms the state-of-the-art

PoseCNN after ICP refinement [41] by 3.5% in pose ac-

curacy while being 200x faster in inference time. In par-

ticular, we demonstrate its robustness in highly cluttered

scenes thanks to our novel dense fusion method. Last, we

also showcase its utility in a real robot task, where the robot

estimates the poses of objects and grasp them to clear up a

table.

In summary, the contributions of this work are two-fold:

First, we present a principled way to combine color and

depth information from the RGB-D input. We augment

the information of each 3D point with 2D information from

an embedding space learned for the task and use this new

color-depth space to estimate the 6D pose. Second, we in-

tegrate an iterative refinement procedure within the neural

network architecture, removing the dependency of previous

methods of a post-processing ICP step.

2. Related Work

Pose from RGB images. Classical methods rely on detect-

ing and matching keypoints with known object models [1, 7,

9, 27, 44]. Newer methods address the challenge by learn-

ing to predict the 2D keypoints [3, 22, 32, 34, 35] and solve

the poses by PnP [10]. Though prevail in speed-demanding

tasks, these methods become unreliable given low-texture

or low-resolution inputs. Other methods propose to directly

estimate objects pose from images using CNN-based archi-

tectures [28, 36]. Many such methods focus on orientation

estimation: Xiang et al. [39, 40] learns a viewpoint-aware

pose estimator by clustering 3D features from object mod-

els. Mousavian et al. [21] predicts 3D object parameters and

recovers poses by single-view geometry constraints. Sun-

dermeyer et al. [31] implicitly encode orientation in a latent

space and in test time find the best match in a codebook as

the orientation prediction. However, pose estimation in 3D

remains a challenge for the lack of depth information. Our

method leverages both image and 3D data to estimate object

poses in 3D in an end-to-end architecture.

Pose from depth / point cloud. Recent studies have pro-

posed to directly tackle the 3D object detection problem in

discretized 3D voxel spaces. For example, Song et al. [29,

30] generate 3D bounding box proposals and estimate the

poses by featuring the voxelized input with 3D ConvNets.

Although the voxel representation effectively encodes ge-

ometric information, these methods are often prohibitively

expensive: [30] takes nearly 20 seconds for each frame.

More recent 3D deep learning architectures have en-

abled methods that directly performs 6D pose estimation

on 3D point cloud data. As an example, both Frustrum

PointNets [23] and VoxelNet [43] use a PointNet-like [24]

structure and achieved state-of-the-art performances on the

KITTI benchmark [11]. Our method also makes use of sim-

ilar architecture. However, unlike urban driving applica-

tions for which point cloud alone provides enough informa-

tion, generic object pose estimation tasks such as the YCB-

Video dataset [41] demands reasoning over both geometric

and appearance information. We address such a challenge

by proposing a novel 2D-3D sensor fusion architecture.

Pose from RGB-D data. Classical approaches extract 3D

features from the input RGB-D data and perform corre-

spondence grouping and hypothesis verification [3, 12, 13,

15, 26, 33, 38]. However, these features are either hard-

coded [12, 13, 26] or learned by optimizing surrogate ob-

jectives [3, 33, 38] such as reconstruction [15] instead of

the true objective of 6D pose estimation. Newer methods

such as PoseCNN [41] directly estimates 6D poses from im-

age data. Li et al. [16] further fuses the depth input as an

additional channel to a CNN-based architecture. However,

these approaches rely on expensive post-processing steps to

make full use of 3D input. In comparison, our method fuses

3D data to 2D appearance feature while retaining the geo-

metric structure of the input space, and we show that it out-

performs [41] on the YCB-Video dataset [41] without the

post-processing step.

Our method is most related to PointFusion [42], in which

geometric and appearance information are fused in a het-

erogeneous architecture. We show that our novel local fea-

ture fusion scheme significantly outperforms PointFusion’s

naive fusion-by-concatenation method. In addition, we use

a novel iterative refinement method to further improve the

pose estimation.

3. Model

Our goal is to estimate the 6D pose of a set of known

objects present in an RGB-D image of a cluttered scene.

Without loss of generality, we represent 6D poses as a ho-

mogeneous transformation matrix, p ∈ SE(3). In other

words, a 6D pose is composed by a rotation R ∈ SO(3)
and a translation t ∈ R

3, p = [R|t]. Since we estimate the
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Figure 2. Overview of our 6D pose estimation model. Our model generates object segmentation masks and bounding boxes from RGB

images. The RGB colors and point cloud from the depth map are encoded into embeddings and fused at each corresponding pixel. The

pose predictor produces a pose estimate for each pixel and the predictions are voted to generate the final 6D pose prediction of the object.

(The iterative procedure of our approach is not depicted here for simplicity)

6D pose of the objects from camera images, the poses are

defined with respect to the camera coordinate frame.

Estimating the pose of a known object in adversarial

conditions (e.g. heavy occlusion, poor lighting, . . . ) is

only possible by combining the information contained in

the color and depth image channels. However, the two data

sources reside in different spaces. Extracting features from

heterogeneous data sources and fusing them appropriately

is the key technical challenge in this domain.

We address this challenge with (1) a heterogeneous ar-

chitecture that processes color and depth information dif-

ferently, retaining the native structure of each data source

(Sec. 3.3), and (2) a dense pixel-wise fusion network that

performs color-depth fusion by exploiting the intrinsic map-

ping between the data sources (Sec. 3.4). Finally, the pose

estimation is further refined with a differentiable iterative

refinement module (Sec. 3.6). In contrast to the expensive

post-hoc refinement steps used in [16, 41], our refinement

module can be trained jointly with the main architecture and

only takes a small fraction of the total inference time.

3.1. Architecture Overview

Fig. 2 illustrates the overall proposed architecture. The

architecture contains two main stages. The first stage takes

color image as input and performs semantic segmentation

for each known object category. Then, for each segmented

object, we feed the masked depth pixels (converted to 3D

point cloud) as well as an image patch cropped by the

bounding box of the mask to the second stage.

The second stage processes the results of the segmenta-

tion and estimates the object’s 6D pose. It comprises four

components: a) a fully convolutional network that processes

the color information and maps each pixel in the image crop

to a color feature embedding, b) a PointNet-based [24] net-

work that processes each point in the masked 3D point cloud

to a geometric feature embedding, c) a pixel-wise fusion

network that combines both embeddings and outputs the es-

timation of the 6D pose of the object based on an unsuper-

vised confidence scoring, and d) an iterative self-refinement

methodology to train the network in a curriculum learning

manner and refine the estimation result iteratively. Fig. 2

depicts a), b) and c) and Fig. 3 illustrates d). The details our

architecture are described below.

3.2. Semantic Segmentation

The first step is to segment the objects of interest in the

image. Our semantic segmentation network is an encoder-

decoder architecture that takes an image as input and gener-

ates an N+1-channelled semantic segmentation map. Each

channel is a binary mask where active pixels depict objects

of each of the N possible known classes. The focus of this

work is to develop a pose estimation algorithm. Thus we

use an existing segmentation architecture proposed by [41].

3.3. Dense Feature Extraction

The key technical challenge in this domain is the correct

extraction of information from the color and depth channels

and their synergistic fusion. Even though color and depth

present a similar format in the RGB-D frame, their infor-

mation resides in different spaces. Therefore, we process

them separately to generate color and geometric features

from embedding spaces that retain the intrinsic structure of

the data sources.

Dense 3D point cloud feature embedding: Previous ap-
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proaches have used CNN to process the depth image as an

additional image channel [16]. However, such method ne-

glects the intrinsic 3D structure of the depth channel. In-

stead, we first convert the segmented depth pixels into a 3D

point cloud using the known camera intrinsics, and then use

a PointNet-like architecture to extract geometric features.

PointNet by Qi et al. [24] pioneered the use of a symmet-

ric function (max-pooling) to achieve permutation invari-

ance in processing unordered point sets. The original archi-

tecture takes as input a raw point cloud and learns to encode

the information about the vicinity of each point and of the

point cloud as a whole. The features are shown to be effec-

tive in shape classification and segmentation [24] and pose

estimation [23, 42]. We propose a geometric embedding

network that generates a dense per-point feature by map-

ping each of the P segmented points to a dgeo-dimensional

feature space. We implement a variant of PointNet architec-

ture that uses average-pooling as opposed to the commonly

used max-pooling as the symmetric reduction function.

Dense color image feature embedding: The goal of the

color embedding network is to extract per-pixel features

such that we can form dense correspondences between 3D

point features and image features. The reason for form-

ing these dense correspondences will be clear in the next

section. The image embedding network is a CNN-based

encoder-decoder architecture that maps an image of size

H ×W × 3 into a H ×W × drgb embedding space. Each

pixel of the embedding is a drgb-dimensional vector repre-

senting the appearance information of the input image at the

corresponding location.

3.4. Pixel­wise Dense Fusion

So far we have obtained dense features from both the

image and the 3D point cloud inputs; now we need to fuse

the information. A naive approach would be to generate

a global feature from the dense color and depth features

from the segmented area. However, due to heavy occlu-

sion and segmentation errors, the set of features from the

previous step may contain features of points/pixels on other

objects or parts of the background. Therefore, blindly fus-

ing color and geometric features globally would degrade the

performance of the estimation. In the following we describe

a novel pixel-wise1 dense fusion network that effectively

combines the extracted features, especially for pose estima-

tion under heavy occlusion and imperfect segmentation.

Pixel-wise dense fusion: The key idea of our dense fu-

sion network is to perform local per-pixel fusion instead

of global fusion so that we can make predictions based on

each fused feature. In this way, we can potentially select

the predictions based on the visible part of the object and

minimize the effects of occlusion and segmentation noise.

1Since the mapping between pixels and 3D points is unique, we will

use interchangeably pixel-fusion and point-fusion.

Concretely, our dense fusion procedure first associates the

geometric feature of each point to its corresponding image

feature pixel based on a projection onto the image plane us-

ing the known camera intrinsic parameters. The obtained

pairs of features are then concatenated and fed to another

network to generate a fixed-size global feature vector using

a symmetric reduction function. While we refrained from

using a single global feature for the estimation, here we en-

rich each dense pixel-feature with the global densely-fused

feature to provide a global context.

We feed each of the resulting per-pixel features into a

final network that predicts the object’s 6D pose. In other

words, we will train this network to predict one pose from

each densely-fused feature. The result is a set of P pre-

dicted poses, one per feature. This defines our first learning

objective, as we will see in Sec. 3.5. We will now explain

our approach to learning to choose the best prediction in a

self-supervised manner, inspired by Xu et al. [42].

Per-pixel self-supervised confidence: We would like to

train our pose estimation network to decide which pose es-

timation is likely to be the best hypothesis based on the spe-

cific context. To do so, we modify the network to output

a confidence score ci for each prediction in addition to the

pose estimation predictions. We will have to reflect this sec-

ond learning objective in the overall learning objective, as

we will see at the end of the next section.

3.5. 6D Object Pose Estimation

Having defined the overall network structure, we now

take a closer look at the learning objective. We define the

pose estimation loss as the distance between the points sam-

pled on the objects model in ground truth pose and cor-

responding points on the same model transformed by the

predicted pose. Specifically, the loss to minimize for the

prediction per dense-pixel is defined as

L
p
i =

1

M

∑

j

||(Rxj + t)− (R̂ixj + t̂i)|| (1)

where xj denotes the jth point of the M randomly selected

3D points from the object’s 3D model, p = [R|t] is the

ground truth pose, and p̂i = [R̂i|t̂i] is the predicted pose

generated from the fused embedding of the ith dense-pixel.

The above loss function is only well-defined for asym-

metric objects, where the object shape and/or texture deter-

mines a unique canonical frame. Symmetric objects have

more than one and possibly an infinite number of canoni-

cal frames, which leads to ambiguous learning objectives.

Therefore, for symmetric objects, we instead minimize the

distance between each point on the estimated model orien-

tation and the closest point on the ground truth model. The
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Figure 3. Iterative Pose Refinement. We introduce an network

module that refines the pose estimation in an iterative procedure.

loss function becomes:

L
p
i =

1

M

∑

j

min
0<k<M

||(Rxj + t)− (R̂ixk + t̂i)|| (2)

Optimizing over all predicted per dense-pixel poses

would be to minimize the mean of the per dense-pixel

losses: L = 1

N

∑
i L

p
i . However, as explained before,

we would like our network to learn to balance the confi-

dence among the per dense-pixel predictions. To do that we

weight the per dense-pixel loss with the dense-pixel confi-

dence, and add a second confidence regularization term:

L =
1

N

∑

i

(Lp
i ci − w log(ci)), (3)

where N is the number of randomly sampled dense-pixel

features from the P elements of the segment and w is a bal-

ancing hyperparameter. Intuitively, low confidence will re-

sult in low pose estimation loss but would incur high penalty

from the second term, and vice versa. We use the pose esti-

mation that has the highest confidence as the final output.

3.6. Iterative Refinement

The iterative closest point algorithm (ICP) [2] is a pow-

erful refinement approach used by many 6D pose estima-

tion methods [14, 31, 41]. However, the best-performing

ICP implementations are often not efficient enough for real-

time applications. Other refinement methods including[17,

18] assume the access to a real-time rendering engine and

object models with high-quality textures. Here we propose

a neural network-based iterative refinement module based

on our densely-fused embedding that can improve the final

pose estimation result in a fast and robust manner without

additional rendering techniques.

The goal is to enable the network to correct its own pose

estimation error in an iterative manner. The challenge here

is training the network to refine the previous prediction as

opposed to making new predictions. To do so, we must in-

clude the prediction made in the previous iteration as part of

the input to the next iteration. Our key idea is to consider the

previously predicted pose as an estimate of canonical frame

of the target object and transform the input point cloud into

this estimated canonical frame. This way, the transformed

point cloud implicitly encodes the estimated pose. We then

feed the transformed point cloud back into the network and

predict a residual pose based on the previously estimated

pose. This procedure can be applied iteratively and gener-

ate potentially finer pose estimation each iteration.

The procedure is illustrated in Fig. 3. Concretely, we

train a dedicated pose residual estimator network to per-

form the refinement given the initial pose estimation from

the main network. At each iteration, we reuse the image fea-

ture embedding from the main network and perform dense

fusion with the geometric features computed for the new

transformed point cloud. The pose residual estimator uses

as input a global feature from the set of fused pixel features.

After K iterations, we obtain the final pose estimation as

the concatenation of the per-iteration estimations:

p̂ = [RK |tK ] · [RK−1|tK−1] · · · · · [R0|t0] (4)

In our experiments, only after K = 2 iterations, the re-

fined pose is already able to surpass the ICP-refined results

of prior works. The pose residual estimator can be trained

jointly with the main network. However, the pose estima-

tion at the beginning of the training is too noisy for it to

learn anything meaningful. Thus in practice, the joint train-

ing starts after the main network has converged.

4. Experiments

In the experimental section, we would like to answer the

following questions: (1) How does the dense fusion net-

work compare to naive global fusion-by-concatenation? (2)

Is the dense fusion and prediction scheme robust to heavy

occlusion and segmentation errors? (3) Does the iterative

refinement module improve the final pose estimation? (4)

Is our method robust and efficient enough for downstream

tasks such as robotic grasping?

To answer the first three questions, we evaluate our

method on two challenging 6D object pose estimation

datasets: YCB-Video Dataset [41] and LineMOD [12]. The

YCB-Video Dataset features objects of varying shapes and

texture levels under different occlusion conditions. Hence

it’s an ideal testbed for our occlusion-resilient multi-modal

fusion method. The LineMOD dataset is a widely-used

dataset that allows us to compare with a broader range of ex-

isting methods. We compare our method with state-of-the-

art methods [14, 31, 42] as well as model variants. To an-

swer the last question, we deploy our model to a real robot

platform and evaluate the performance of a robot grasping

task that uses the predictions from our model.

4.1. Datasets

YCB-Video Dataset. The YCB-Video Dataset Xiang et

al. [41] features 21 YCB objects Calli et al. [5] of varying
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Figure 4. Qualitative results on the YCB-Video Dataset. All three methods shown here are tested with the same segmentation masks as

in PoseCNN. Each object point cloud in a different color is transformed with the predicted pose and then projected to the 2D image frame.

The first two rows are former RGB-D methods and the last row is our approach with dense fusion and iterative refinement (2 iterations).

shape and texture. The dataset contains 92 RGB-D videos,

where each video shows a subset of the 21 objects in differ-

ent indoor scenes. The videos are annotated with 6D poses

and segmentation masks. We follow prior work [41] and

split the dataset into 80 videos for training and 2,949 key

frames chosen from the rest 12 videos for testing and in-

clude the same 80,000 synthetic images released by [41]

in our training set. In our experiments, we compare with

the result of [41] after depth refinement(ICP) and learning-

based depth method [42].

LineMOD Dataset. The LineMOD dataset Hinterstoisser

et al. [12] consists of 13 low-textured objects in 13 videos.

It is widely adopted by both classical methods [4, 8, 37]

and recent learning-based approaches [17, 31, 34]. We use

the same training and testing set as prior learning-based

works [17, 25, 34] without additional synthetic data and

compare with the best ICP-refined results of the state-of-

the-art algorithms.

4.2. Metrics

We use two metrics to report on the YCB-Video Dataset.

The average closest point distance (ADD-S) [41] is an

ambiguity-invariant pose error metric which takes care of

both symmetric and non-symmetric objects into an over-

all evaluation. Given the estimated pose [R̂|t̂] and ground

truth pose [R|t], ADD-S calculates the mean distance from

each 3D model point transformed by [R̂|t̂] to its closest

neighbour on the target model transformed by [R|t]. We

report the area under the ADD-S curve (AUC) following

PoseCNN [41]. We follow prior work and set the maximum

threshold of AUC to be 0.1m. We also report the percent-

age of ADD-S smaller than 2cm (<2cm), which measures

the predictions under the minimum tolerance for robot ma-

nipulation (2cm for most of the robot grippers).

For the LineMOD dataset, we use the Average Distance

of Model Points (ADD) [13] for non-symmetric objects and

ADD-S for the two symmetric objects (eggbox and glue)

following prior works [13, 31, 34].

4.3. Implementation Details

The image embedding network consists of a Resnet-

18 encoder followed by 4 up-sampling layers as the de-

coder. The PointNet architecture is an MLP followed by

an average-pooling reduction function. Both color and geo-

metric dense feature embedding are of dimension 128. We

choose w = 0.01 for Eq. 3 by empirical evaluation. The

iterative pose refinement module consists of a 4 fully con-

nected layers that directly output the pose residual from the

global dense feature. We use the 2 refinement iterations for

all experiments.

4.4. Architectures

We compare four model variants that showcase the ef-

fectiveness of our design choices.

• PointFusion [42] uses a CNN to extract a fixed-size fea-

ture vector and fuse by directly concatenating the image fea-

ture with the geometry feature. The rest of the network is

similar to our architecture. The comparison to this baseline

demonstrates the effectiveness of our dense fusion network.

• Ours (single) uses our dense fusion network, but instead

of performing per-point prediction, it only outputs a single

prediction using the global feature vector.

• Ours (per-pixel) performs per-pixel prediction based on

each densely fused feature.

• Ours (iterative) is our complete model that uses the iter-

ative refinement (Sec. 3.6) on top of Ours (per-pixel).
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Table 1. Quantitative evaluation of 6D pose (ADD-S[41]) on YCB-Video Dataset. Objects with bold name are symmetric.
PointFusion [42] PoseCNN+ICP [41] Ours (single) Ours (per-pixel) Ours (iterative)

AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm

002 master chef can 90.9 99.8 95.8 100.0 93.9 100.0 95.2 100.0 96.4 100.0

003 cracker box 80.5 62.6 92.7 91.6 90.8 98.4 92.5 99.3 95.5 99.5

004 sugar box 90.4 95.4 98.2 100.0 94.4 99.2 95.1 100.0 97.5 100.0

005 tomato soup can 91.9 96.9 94.5 96.9 92.9 96.7 93.7 96.9 94.6 96.9

006 mustard bottle 88.5 84.0 98.6 100.0 91.2 97.8 95.9 100.0 97.2 100.0

007 tuna fish can 93.8 99.8 97.1 100.0 94.9 100.0 94.9 100.0 96.6 100.0

008 pudding box 87.5 96.7 97.9 100.0 88.3 97.2 94.7 100.0 96.5 100.0

009 gelatin box 95.0 100.0 98.8 100.0 95.4 100.0 95.8 100.0 98.1 100.0

010 potted meat can 86.4 88.5 92.7 93.6 87.3 91.4 90.1 93.1 91.3 93.1

011 banana 84.7 70.5 97.1 99.7 84.6 62.0 91.5 93.9 96.6 100.0

019 pitcher base 85.5 79.8 97.8 100.0 86.9 80.9 94.6 100.0 97.1 100.0

021 bleach cleanser 81.0 65.0 96.9 99.4 91.6 98.2 94.3 99.8 95.8 100.0

024 bowl 75.7 24.1 81.0 54.9 83.4 55.4 86.6 69.5 88.2 98.8

025 mug 94.2 99.8 95.0 99.8 90.3 94.7 95.5 100.0 97.1 100.0

035 power drill 71.5 22.8 98.2 99.6 83.1 64.2 92.4 97.1 96.0 98.7

036 wood block 68.1 18.2 87.6 80.2 81.7 76.0 85.5 93.4 89.7 94.6

037 scissors 76.7 35.9 91.7 95.6 83.6 75.1 96.4 100.0 95.2 100.0

040 large marker 87.9 80.4 97.2 99.7 91.2 88.6 94.7 99.2 97.5 100.0

051 large clamp 65.9 50.0 75.2 74.9 70.5 77.1 71.6 78.5 72.9 79.2

052 extra large clamp 60.4 20.1 64.4 48.8 66.4 50.2 69.0 69.5 69.8 76.3

061 foam brick 91.8 100.0 97.2 100.0 92.1 100.0 92.4 100.0 92.5 100.0

MEAN 83.9 74.1 93.0 93.2 88.2 87.9 91.2 95.3 93.1 96.8

Table 2. Runtime breakdown (second per frame on YCB-

Video Dataset). Our method is approximately 200x faster than

PoseCNN+ICP. Seg means Segmentation, and PE means Pose Es-

timation.
PoseCNN+ICP [41] Ours

Seg PE ICP ALL Seg PE Refine ALL

0.03 0.17 10.4 10.6 0.03 0.02 0.01 0.06

Figure 5. Model performance under increasing levels of occlu-

sion. Here the levels of occlusion is estimated by calculating the

invisible surface percentage of each object in the image frame. Our

methods work more robustly under heavy occlusion compared to

baseline methods.

4.5. Evaluation on YCB­Video Dataset

Table 1 shows the evaluation results for all the 21

objects in the YCB-Video Dataset. We report the

ADD-S AUC(<0.1m) and the ADD-S<2cm metrics on

PoseCNN [41] and our four model variants. To ensure a fair

comparison, all methods use the same segmentation masks

as in PoseCNN [41]. Among our model variants, Ours

(Iterative) achieves the best performance. Our method is

able to outperform PoseCNN + ICP[41] even without itera-

tive refinement. In particular, Ours (Iterative) outperforms

PoseCNN + ICP by 3.5% on the ADD-S<2cm metric.

Effect of dense fusion Both of our dense fusion baselines

(Ours (single) and Ours (per-pixel)) outperform PointFu-

sion by a large margin, which shows that dense fusion has

a clear advantage over the global fusion-by-concatenation

method used in PointFusion.

Effect of iterative refinement Table 1 shows that our iter-

ative refinement improves the overall pose estimation per-

formance. In particular, it significantly improves the per-

formances for texture-less symmetric object, e.g., bowl

(29%), banana (6%), and extra large clamp (6%)

which suffer from orientation ambiguity.

Robustness towards occlusion The main advantage of our

dense fusion method is its robustness towards occlusions.

To quantify the effect of occlusion on the final performance,

we calculate the visible surface ratio of each object instance.

Then we calculate how the accuracy (ADD-S<2cm percent-

age) changes with the extent of occlusion. As shown in

Fig. 5, the performances of PointFusion and PoseCNN+ICP

degrade significantly as the occlusion increases. In contrast,

none of our methods experiences notable performance drop.

In particular, the performance of both Ours (per-pixel) and

Ours (iterative) only decrease by 2% overall.

Time efficiency We compare the time efficiency of our

model with PoseCNN+ICP in Table 2. We can see

that our method is two order of magnitude faster than

PoseCNN+ICP. In particular, PoseCNN+ICP spends most

of the time on the post processing ICP. In contrast, all of

our computation component, namely segmentation (Seg),

pose estimation (PE), and iterative refinement (Refine), are

equally efficient, and the overall runtime is fast enough
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Table 3. Quantitative evaluation of 6D pose (ADD[13]) on the LineMOD dataset. Objects with bold name are symmetric.
ape ben. cam can cat drill. duck egg. glue hole. iron lamp phone MEAN

RGB
BB8 w ref. [25] 40 92 56 64 63 74 44 58 41 67 84 77 54 63

DeepIM [17, 41] 77 98 94 97 82 95 78 97 99 53 98 98 88 89

RGB-D

Imp. [31]+ICP 21 64 63 76 72 42 32 99 96 50 63 92 71 65

SSD6D [14]+ICP 65 80 78 86 70 73 66 100 100 49 78 73 79 79

PointFusion [42] 70 81 61 61 79 47 63 100 99 72 83 62 79 74

Ours (per-pixel) 80 84 77 87 89 78 76 100 99 79 92 92 88 86

Ours (iterative) 92 93 94 93 97 87 92 100 100 92 97 95 93 94

ADD (m):

ADD (m):

0.029 0.022 0.018 0.018

0.015 0.010 0.008 0.007

initial iteration 1 iteration 2 iteration 3input crop

Figure 6. Iterative refinement performance on LineMOD

dataset We visualize how our iterative refinement procedure cor-

rects initially sub-optimal pose estimation.

for real-time application (16 FPS, about 5 objects in each

frame).

Qualitative evaluation Fig. 4 visualizes some sample pre-

dictions made by PoseCNN+ICP, PointFusion, and our iter-

ative refinement model. As we can see, PoseCNN+ICP and

PointFusion fail to estimate the correct pose of the bowl in

the leftmost column and the cracker box in the middle col-

umn due to heavy occlusion, whereas our method remains

robust. Another challenging case is the clamp in the middle

row due to poor segmentation (not shown in the figure). Our

approach localizes the clamp from only the visible part of

the object and effectively reduces the dependency on accu-

rate segmentation result.

4.6. Evaluation on LineMOD Dataset

Table 3 compares our method with previous RGB meth-

ods with depth refinement(ICP) (results from [31, 34]) on

the ADD metric [13]. Even without the iterative refinement

step, our method can outperform 7% over the state-of-the-

art depth refinement method. After processing the itera-

tive refinement approach, the final result has another 8%

improvement, which proves that our learning-based depth

method is superior to the sophisticated application of ICP

in both accuracy and efficiency. We visualize the estimated

6D pose after each refinement iteration in Fig. 6, where our

pose estimation improves by an average of 0.8 cm (ADD)

after 2 refinement iterations. The results of some other

color-only methods are also listed in Table 3 for reference.

4.7. Robotic Grasping Experiment

In our last experiment, we evaluate whether the poses

estimated by our approach are accurate enough to enable

robot grasping and manipulation. As shown in Fig. 1, we

place 5 YCB objects on a table and command the robot to

grasp them using the estimated pose. We follow a similar

procedure to Tremblay et al. [35]: we place the five ob-

jects in four different random locations on the table, at three

random orientations, including configurations with partial

occlusions. Since the order of picking the objects is not op-

timized, we do not allow configurations where objects lay

on top of each other. The robot attempts 12 grasps on each

object, 60 attempts in total. The robot uses the estimated

object orientation to compute an alignment of the gripper’s

fingers to the object narrower dimension.

The robot succeeds on 73% of the grasps using our pro-

posed approach to estimate the pose of the objects. The

most difficult object to grasp is the banana (7 out of 12 suc-

cessful attempts). One possible reason is that our banana

model is not exactly the same as in the dataset – ours is

plain yellow. This characteristic hinders the estimation, es-

pecially of the orientation, and leads to some failed grasp

attempts along the longer axis of the object. In spite of this

less accurate case, our results indicate that our approach is

robust enough to be deployed in real-world robotic tasks

without explicit domain adaptation, even with a different

RGB-D sensor and in a different background than the ones

in the training data.

5. Conclusion

We presented a novel approach to estimating 6D poses of

known objects from RGB-D images. Our approach fuses a

dense representation of features that include color and depth

information based on the confidence of their predictions.

With this dense fusion approach, our method outperforms

previous approaches in several datasets, and is significantly

more robust against occlusions. Additionally, we demon-

strated that a robot can use our proposed approach to grasp

and manipulate objects.
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