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Abstract. Reasoning about objects and their affordances is a funda-
mental problem for visual intelligence. Most of the previous work casts
this problem as a classification task where separate classifiers are trained
to label objects, recognize attributes, or assign affordances. In this work,
we consider the problem of object affordance reasoning using a knowledge
base representation. Diverse information of objects are first harvested
from images and other meta-data sources. We then learn a knowledge
base (KB) using a Markov Logic Network (MLN). Given the learned KB,
we show that a diverse set of visual inference tasks can be done in this
unified framework without training separate classifiers, including zero-
shot affordance prediction and object recognition given human poses.

1 Introduction

Visual reasoning is one ultimate goal of visual intelligence. Take an apple in
Fig. 1 for example. Given a picture of an apple, humans can recognize the object
name, its shape, color, texture, infer its taste, and think about how to eat it.
Much of our field’s effort in visual reasoning is focused on assigning a class label
to some part of an image. Indeed casting the reasoning problem as a classification
problem is intuitive. Most of the powerful machine learning tools are based on
optimizing a classification objective. But this classifier-based paradigm also has
limitations. Compared to the rich reasoning that can go through a person’s mind
upon seeing an apple, a typical object classifier is doing a “shallow” reasoning.

In this paper, we focus on the task of predicting the affordances of objects,
and illustrate how a new representation of the visual and semantic information
can go beyond this “shallow” reasoning and allow for more flexible and deeper
visual reasoning. Gibson in his seminal paper [16] in 1979 refers to affordance as
“properties of an object [...] that determine what actions a human can perform
on them.” Inspired by this, and a number of recent studies in computer vision
[17,21,18,37], we define the full description of affordance as a combination of three
things: (1) an affordance label (e.g. edible), (2) a human pose representation of
the action (e.g. in skeleton form) and (3) a relative position of the object with
respect to the human pose (e.g. next to).

A Naïve Approach. One way to make a rich prediction of affordance is to
train a battery of different classifiers, each focusing on one aspect (color, shape,
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Fig. 1. An example knowledge structure for visual reasoning. Relevant nodes
are interconnected in the knowledge graph. Different types of edges (indicated by color)
depict a diverse range of relations between nodes, which relate different concepts, such
as objects, their attributes and affordances, to each other.

texture, etc.) of the object. However, assuming we can do this for an exhaustive
list of attributes of an apple, the reverse question remains — namely, inferring
the type of fruit given an image of a person eating a piece of fruit or an image
of a red, round piece of fruit.

Knowledge-Based Approach. Another way to consider the problem of visual
reasoning is through a knowledge structure, such as the one illustrated in Fig. 1.
Apple, in a knowledge graph, is a node (or entity) connected to other nodes,
some depicting its visual attributes such as shape, color, texture, and other nodes
depicting its affordance, such as edible. Each node connecting apple is further
connected to other relevant nodes. In Fig. 1, the edible node is connected with
pear, and the round node is connected to basketball, etc.

This representation is well known in the database and NLP communities,
often called knowledge base (KB) or knowledge graph. Compared to classifiers
that tackle one specific task, using a knowledge-based representation can en-
able querying a much larger array of questions. In one unified system, once the
building and training the KB is complete, we are able to perform tasks such
as zero-shot inference of object affordances, estimation of action pose given a
visual object, prediction of an object given a likely action, etc. When using the
aforementioned naïve approach, we would have trained separate classifiers for
each of these tasks, each requiring a different set of training data and labels.

This paper presents a principled way of building a knowledge base (KB) of
objects, their attributes, and affordances by extracting information from images
as well as online textual sources such as Amazon and eBay. We use a Markov
Logic Network (MLN) model [28] to represent the KB. We emphasize that once
the KB of objects and their properties are trained, we can perform a number
of different inference tasks in a unified framework without any further training.
We demonstrate the effectiveness of this representation by testing on a number
of sub-tasks related to zero-shot object affordance inference as well as object
prediction given human poses. Our system outperforms classifiers trained for
each individual sub-task.

2 Previous Work

Object Affordances. While the majority of visual recognition work focus
on learning visual appearance based classifiers of objects [12,11,23], there is a
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growing interest in recognizing object and scene affordances (some call “function-
alities”) [21,17,15,37,20,22,19]. Winston et al. [34] learn physical descriptions of
objects from their functional definitions. Gupta and Davis [18] and Kjellström
et al. [21] use the functionality to detect objects. Grabner et al. [17] and Jiang
et al. [20] represent affordances by hallucinating humans as the hidden context.
Yao et al. [37] represent the functionality of an object based on the majority’s
human poses during interactions with it. None of the work, however, can predict
affordance in novel objects. Furthermore, most of these work predict affordance
as a single label whereas we can simultaneously predict affordance label, human
pose and relative object location in a unified framework.

Zero-Shot Learning of Objects and Attributes. The classic approach to
recognizing unseen objects is based on the visual similarity of the novel object
with previously seen examples (e.g. [14,2]). More recently, Lampert et al. [25]
introduced a method that recognizes unseen objects by transferring attributes
from previously observed classes. Parikh and Grauman [27] extend this work by
replacing binary attributes with relative attributes. Rohrbach et al. [29] compare
three methods for knowledge transfer: object similarity, attributes, and object
hierarchy. Furthermore, they mine attributes from the web to improve the per-
formance of their method. In contrast to these methods, (a) we can predict
affordances of unseen objects and infer much richer information beyond visual
similarities, and (b) we use a knowledge based approach for reasoning and an-
swering various types of queries, both through images and text.

Knowledge Base Representation. There is a growing trend towards building
large-scale knowledge bases with statistical learning methods. NELL [5] learns
probabilistic horn clauses by extracting and analyzing information from web text.
NEIL [6] is a framework to automatically extract common sense relationships
from web images. The Jeopardy! -winning DeepQA project [13] proposes a proba-
bilistic evidence-based question-answering architecture involving more than 100
different techniques. Similar to this work, StatSnowball [38] and Elementary [26]
use Markov Logic Networks [28] as the underlying knowledge representation and
perform statistical inference for knowledge base construction. Tran and Davis
[33] use Markov Logic Network to model events that contain complex interac-
tions of people and vehicles. In contrast to these models, our knowledge base
incorporates a wide range of heterogeneous information, allowing us to answer
a diverse set of visual and textual queries.

3 Knowledge Base Construction and Representation

We first present our method for constructing a KB that relates objects, their
attributes, and their affordances comprised of the three aforementioned compo-
nents (affordance labels, human poses and human-object relative locations). To
illustrate our idea, we use 40 objects and their properties for constructing the
KB. However, our method is scalable to an arbitrary number of objects.
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3.1 Overview of the Knowledge Base

A knowledge base (KB) refers to a repository of entities and rules that can be
used for problem solving. One can also think of the KB as a graph (similar to
Fig. 1), where the nodes denote the entities and the edges, denoting the general
rules, characterize their relations.

Entities. The entities in our KB consist of object attributes and affordances.
We use three types of attributes to describe an object:

1. Visual attributes – correspond to knowledge acquired from visual percep-
tion. Inspired by recent work on attribute learning [9,25,27], we define a set
of visual attributes as a mid-level description of visual appearance.

2. Physical attributes – constitute a form of knowledge from the physical
world. Each physical attribute is a measurable quantity that describes one
aspect of the object. We select two relevant properties, weight and size, to
describe the objects.

3. Categorical attributes – reflect a semantic understanding (generalization)
of the object. Object categories form a hierarchy consisting of several levels of
abstraction [8]. Knowledge of categorical attributes (e.g. a dog is an animal)
often facilitates the ability of affordance reasoning.

These attributes serve as an intermediate representation of objects. This rep-
resentation allows us to transfer knowledge across objects, and thus to predict
the affordances of an object even if it has never seen before, which are represented
by three types of entities:

1. Affordance labels – a verb or a verb phrase (e.g. ride and sit on).
2. Human poses – an articulated skeleton of human poses.
3. Huamn-object relative locations – the spatial relations between the hu-

man and the object during a human-object interaction.

General Rules. The general rules describe the relations between the entities.
One can think of them as the edges in the knowledge graph. We model three
types of relations between these entities:

1. Attribute-Attribute Relations. Strong correlations exist between at-
tributes. We model these correlations with attribute-attribute relations.
Positive weights indicate a positive correlation between two attributes; con-
versely, negative weights indicate that these attributes are not likely to co-
occur.

2. Attribute-Affordance Relations. We observe that the affordances of an
object are largely dependent upon its attributes (e.g. laptops and umbrel-
las are lift-able because they are not heavy). We model these dependency
relationships by a set of attribute-affordance relations.
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Fig. 2. A system overview of knowledge base learning. This process consists
of two phases (Section 3.2). First we collect the evidence from diverse data sources,
including images and online text. Then we learn the KB using Markov Logic Network.

3. Human-Object-Interaction (HOI) Relations. Humans are likely to in-
teract with different objects in different ways. Furthermore, an object’s at-
tributes affect the way that a human interacts with it (e.g. the weight of an
object changes the way it is grasped). Therefore, human poses and human-
object spatial relations are jointly determined by the object attributes and
the affordance. We define four sets of HOI relations to model the correlations
(attribute-pose, affordance-pose, attribute-location and affordance-location).

3.2 Learning the Knowledge Base

Now that we have defined the entities and rules of the KB, we are ready to learn
it from source data. There are two phases in learning the KB. First we collect
evidence from diverse sources containing images and online textual sources. Then
we employ Markov Logic Network (MLN) [28] for knowledge representation.
Fig. 2 is a system overview of the key steps in the learning process. We now
elaborate each of these steps below.

Phase 1: Collecting Evidence for KB Construction. A KB is populated
by evidence, a set of facts and assertions about the entities. As Fig. 1 and Fig. 2
illustrate, we would like our KB to incorporate a wide range of heterogeneous
information, including object attributes, affordances, human poses, etc.

Data source — We choose 40 objects offered by Stanford 40 Actions dataset
[36] to seed the KB. For each object, we sample 100 images from the ImageNet
dataset [7]. We select 14 affordances from human actions in Stanford 40 Actions.
Fig. 3 shows 10 out of the 40 objects and the 14 different affordance labels. On
average, each object has 4.25 out of the 14 affordances. Note that, the first four
affordances are low-level physical interactions, which are a major interest in the
robotics community; while, the rest are daily actions that often involve more
complex human-object interaction and demand a higher-level understanding.

Evidence — Given the 40 objects, we are now ready to collect a set of
evidence for the KB from the images as well as a number of online sources, such
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Fig. 3. Object images and affordance labels. We illustrate 10 objects in our KB
and their affordance labels. The x-axis lists the 14 affordances and the y-axis provides
the names of the 10 objects with sample images on the right. The presence of an
affordance is indicated by blue color.

as Freebase [3], WordNet [10] and online shopping sites. For constructing a good
KB, we would like the evidence to be diverse, accurate and consistent.

1. Visual attributes. Following [9], we choose 33 pre-trained visual attribute
classifiers1 to describe the shape, material and parts of the objects.

2. Physical attributes. We extract the real-world weights and real-world sizes
of the objects from the animal synopsis fields on Freebase [3] and product
details data from Amazon2 and eBay3. To accommodate the noise in web
data, we take the medians of the top K retrieved results as the true values.
We quantize the weights into four bins (<1kg, 1–10kg, 10–100kg and >100kg)
and the sizes into three bins (<10in, 10–100in and >100in). Fig. 4 shows a
list of objects ranked by their weights and the four bins for quantization.

~ ~

Fig. 4. (Best viewed in color) Objects ranked by their physical weights. The
weights are automatically collected from web sources. The quantization bins are indi-
cated by the font colors. These estimates roughly reflect real-world weights of objects.
Some objects (e.g. toothbrush and dustcloth) get larger estimates than expected since
they are usually sold in batch on the shopping sites we use as data sources.

1 Visual attributes: boxy 2D, boxy 3D, clear, cloth, feather, furn. arm, furn. back,
furn. leg, furn. seat, furry, glass, handlebars, head, horiz. cyl., label, leather, metal,
pedal, plastic, pot, rein, round, saddle, screen, shiny, skin, tail, text, vegetation, vert.
cyl., wheel, wood, wool

2 http://www.amazon.com/
3 http://www.ebay.com/

http://www.amazon.com/
http://www.ebay.com/
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3. Categorical attributes. Membership to more general classes can be infor-
mative for object reasoning [24,8]. We refer to this as categorical attributes.
We obtain these attributes by extracting the hypernym hierarchy from lex-
ical ontologies such as WordNet [10]. The hypernyms of an object can be
regarded as a generalization of this object (e.g. hypernyms of dog are mam-
mal, animal, etc.). To improve computational efficiency, we merge hypernyms
that cover the same set of objects and remove those containing only one ob-
ject. Finally, we use 22 hypernyms4 as categorical attributes.

4. Affordance labels. As Fig. 3 illustrates, multiple affordance labels are as-
signed to each object in the KB. For this paper, we provide a manual labeling
of the affordances to the 40 objects used for training. But one alternative ap-
proach would be to obtain a few canonical affordances is to extract the most
frequent verbs associated with a noun phrase in large corpus like Google
N-gram (the dashed arrow in Fig. 2).

5. Human poses. Human poses can be extracted from human action images in
Stanford 40 Actions. Many approaches [35,1,37] have been proposed for this
task, yet the state-of-the-art methods fail to perform robustly on images with
large variations. To ensure the robustness of our KB in the training phase,
we annotate the human poses of the images manually. We compute a pose
descriptor based on the tilt angles of body parts (see Fig. 5(a)). The body
part descriptors are discretized by k-means. The number of cluster centroids
is determined by the Elbow Method. In practice, we choose 3 clusters for
torsos, 8 for lower bodies and 8 for upper bodies.

6. Human-object relative locations. We extract human-object spatial rela-
tions based on the relative locations and sizes of their bounding boxes from
human action images. The spatial relations are quantized into five bins:
above, on-top, below, next-to and in-hand (see Fig. 5(b)).

Phase 2: Learning the KB Using Markov Logic. Given the collected evi-
dence, we build the KB by learning the relations, i.e. the weights of the general
rules. We employ a Markov Logic Network (MLN) [28] for knowledge representa-
tion. Fig. 6 summarizes the schema and general rules with some examples. The
idea of MLN is to unify Markov Random Fields (MRF) and first-order logic.
Markov Logic is a widely used language in statistical relational learning, which
specifies an MRF by a weighted first-order logic knowledge base. Learning and
inference in MLN resemble the standard algorithms for MRF, where a ground
MRF is first instantiated by the weighted logic formulae. The formulae repre-
senting the entities and general rules define the structure of the KB. MLN can be
considered as a log-linear model with one node per ground atom and one feature

4 Categorical attributes: animal, instrumentality, implement, device, container,
tool, equipment, vehicle, machine, wheeled vehicle, vessel, electronic equipment, edge
tool, handcart, seat, musical instrument, cooking utensil, computer, scientific instru-
ment, knife, telephone, writing implement
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Fig. 5. Pose descriptors and human-object relative locations. (a) Human pose
is represented by the tilt angles of body parts. The upper bodies are described by the
angles of left and right shoulders and elbows, and the lower bodies by the angles of
hips and knees. (b) Relative object locations are represented as quantized bins based
on the centers and sizes of their bounding boxes. We use a total of five spatial bins to
describe the human-object spatial relations.
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Fig. 6. Knowledge base schema and general rules. The arguments in the schema
specify the types of the variables. W 2, T1 and U3 correspond to the quantized object
weight (1–10kg), the first cluster for the torso and the third cluster for the upper body.

per ground formula. The joint distribution over possible worlds x is given by

P (X = x) =
1

Z
exp

(
n∑

i=1

wifi(x{i})

)
(1)

where Z is the partition function, F is the set of first-order formulae in MLN
and n is the number of formulae in F , x{i} is a state of ground atoms appearing
in the formula Fi and the feature function fi(x{i}) = 1 if Fi(x{i}) is true and
0 otherwise. The weights w indicate the likelihood of the formulae being true.
We learn the optimal weights w∗ by maximizing the pseudo-likelihood given the
evidence collected in Section 3.2 using the L-BFGS algorithm [28].

3.3 Visualizing the Knowledge Base

Fig. 7 visualizes a part of the constructed knowledge base. In this graph, each
node (entity) corresponds to an atomic formula in MLN, and each edge (general
rule) corresponds to a first-order logic formula that composes two atomic formu-
lae with logic connectives and quantifiers. The weights of the edges are learned
in Markov Logic (Section 3.2), where positive weights indicate that two entities
are likely to co-occur (e.g. furry and feed), and negative weights indicate the
entities are negatively correlated (e.g. fix and animal).
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Fig. 7. Graphical illustration of the constructed KB. The nodes denote the enti-
ties (atomic formulae in MLN) illustrated on the right. The edges denote the attribute-
attribute and attribute-affordance relations. The green solid edges indicate positive
weights and the red dashed edges indicate negative weights.

0.8232  hasVisualAttribute(x, Saddle) ⇒ hasAffordance(x, SitOn) 
0.7467  hasVisualAttribute(x, Pedal) ⇒ hasAffordance(x, Lift) 
0.7155  hasVisualAttribute(x, Screen) ⇒ hasAffordance(x, Fix) 
0.7012  hasVisualAttribute(x, Head) ⇒ hasAffordance(x, Feed) 
0.6540  hasVisualAttribute(x, Furry) ⇒ hasAffordance(x, Feed) 

(a) Top positive attributes (Visual)

-1.0682  hasVisualAttribute(x, Metal) ⇒ hasAffordance(x, Feed) 
-1.0433  hasVisualAttribute(x, Shiny) ⇒ hasAffordance(x, Feed) 
-1.0115  hasVisualAttribute(x, Boxy_3D) ⇒ hasAffordance(x, Feed) 
-0.8317  hasVisualAttribute(x, Wheel) ⇒ hasAffordance(x, Feed) 
-0.7987  hasVisualAttribute(x, Text) ⇒ hasAffordance(x, Feed) 

(b) Top negative attributes (Visual)

5.4734  isA(x, Animal) ⇒ hasAffordance(x, Feed) 
3.3196  isA(x, Vehicle) ⇒ hasAffordance(x, Ride) 
3.2436  isA(x, Vehicle) ⇒ hasAffordance(x, Row) 
2.7976  isA(x, Container) ⇒ hasAffordance(x, PourFrom) 
2.6208  isA(x, Animal) ⇒ hasAffordance(x, SitOn) 

(c) Top positive rules

-3.8636  isA(x, Animal) ⇒ hasAffordance(x, Fix) 
-2.2209  isA(x, Seat) ⇒ hasAffordance(x, Push) 
-1.8066  isA(x, Vehicle) ⇒ hasAffordance(x, Lift) 
-1.7254  isA(x, Instrumentality) ⇒ hasAffordance(x, Feed) 
-1.3258  isA(x, Instrumentality) ⇒ hasAffordance(x, Fix) 

(d) Top negative rules

Fig. 8. Top weighted attribute-affordance relations. The relations between cate-
gorical attributes and affordances have the largest weights, indicating their importance
in determining object affordances. For comparison, we also provide the top weighted
relations between visual attributes and affordances. The weighted rules can be well in-
terpreted. For instance, the first rule in Fig. 8(b) denotes that “objects that look metal
are less likely to be feed-able”.

To ensure the quality of the KB, we further examine the weights of general
rules learned by MLN statistical inference. Large positive/negative weights indi-
cate a high confidence of the rule being true/false [28]. Fig. 8 lists the top pos-
itive and negative weighted attribute-affordance relations. In contrast to visual
attributes, categorical attributes serve as a more discriminative semantic-level
abstraction, and therefore have larger weights.

4 Affordance Reasoning with KB

Now that we have learned a KB containing rich information about objects, their
attributes and affordances, we show in this section a number of experiments
to illustrate the effectiveness of this knowledge representation. We emphasize
on the word reasoning. One of the most important advantages of using a KB
representation is to allow for different types of visual and textual queries in
a unified framework, as opposed to training separate classifiers for each task.
Section 4.1 and Section 4.2 show experimental results for a number of visual
tasks. Section 4.3 further explores some important properties of the KB.
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Fig. 9. The inference procedure of zero-shot affordance prediction. Given an
image of a novel object, our model estimates the object attributes via a hierarchical
model. These attributes serve as evidence for KB queries. We then employ first-order
probabilistic inference to predict the affordances and to estimate human poses and
human-object relative locations.

4.1 Zero-Shot Affordance Prediction

Given an unseen object, it is often useful to predict its affordances for both
humans and robots. We remind readers that by affordance, we mean a combi-
nation of three pieces of information: an affordance label, the human pose and
human-object relative location. We first briefly discuss the inference procedure,
the testing data, and then show a number of experimental results.

Inference. Using the constructed KB, we propose a hierarchical model to per-
form affordance prediction. Given an image of a novel object, our model employs
the visual information as cues to object attributes. The model first estimates vi-
sual attributes of the object, and infers its physical and categorical attributes.
These attributes are taken as evidence to query the affordances and most likely
human poses and object relative locations. We use lifted belief propagation for
inference [31]. Fig. 9 illustrates an overview of the inference procedure.

Given an image I, we first extract the base features suggested in [9] and predict
visual attributes. We then train a L1-regularized logistic regression classifier for
each categorical attribute with both base features and visual attributes. Once
we obtain the scores of visual and categorical attributes, we map the scores
into a binary vector, where the nonzero entries indicate the presence of these
attributes.

We predict the physical attributes by learning a ranking function. Based on the
physical attributes of the training objects (see Fig. 4), we construct a set Pk of
pairwise preferences where (i, j) ∈ Pk indicates i has a larger value than j of the
k-th physical attribute. Our goal is to learn a ranking function Rk(I) = wT

k φ(I)
that attempts to satisfy Rk(Ii) > Rk(Ij) ∀(i, j) ∈ Pk, where wk is a model
parameter and φ(I) is the base features. We train the model parameters using
the ranking SVM formulation in [27]. Given a novel object, we estimate its
physical attributes by comparing its ranking scores to the average scores of
training objects.

Testing Data. Based on the 40 objects in the KB, we select a different set of 22
semantically similar objects5 (close synsets in WordNet hierarchy) for testing.

5 Testing objects: banjo, bench, bowl, broom, camel, cat, coffee cup, donkey, flagon,
hammer, hand truck, kayak, monitor, motorcycle, pencil, rhinoceros, serving cart,
sickle, spoon, stool, typewriter, walkie-talkie.
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Fig. 10. Results of affordance prediction. We visualize the predicted affordances
for a few testing objects. The relative locations are indicated by the color boxes defined
in Fig. 5. The first seven examples are correct predictions; while the last two examples
fail to match the ground-truth poses/locations.

For each object, we randomly sample 50 images from ImageNet [7]. These images
of novel objects are taken as the inputs for affordance prediction.

Result 1: Predicting Affordance Labels. Some results are shown in Fig. 10.
Our model can correctly predict the affordances of a novel object given object
images from various viewpoints. Besides assigning affordance labels, the model
simultaneously estimates the human poses and object relative locations.

For quantitative evaluation, we use the mean area under the ROC curve
(mAUC) over all the affordances to evaluate the performance of our model (Ta-
ble 1). We compare our method with two attribute-based classifiers based on
previous work [9,25]. From the hierarchical model, we extract the base features
and estimate the object attributes. Following [9] and [25], we train linear clas-
sifiers with L1-regularized logistic regression and SVMs with a multi-channel
χ2-kernel on four types of features: base features (BF), visual attributes (VA)
and categorical & physical attributes (CP) and combined attributes (VA+CP).

Table 1. Performance of Zero-shot Affordance Prediction (measured in mAUC)

Method L1-LR [9] χ2-SVM [25] Ours
base features (BF) 0.7858 - -
visual attributes (VA) 0.7525 0.7533 0.7432
categorical & physical (CP) 0.7919 0.7924 0.8234
combined (VA+CP) 0.8006 0.7985 0.8409

Our results in Table 1 indicate a combination of features achieve the best per-
formance for the classifiers. In comparison, the knowledge-based model achieves
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the best performance with a 4% improvement over the best classification-based
method. We attribute the better performance of the knowledge-based model to
the complex general rules. Such relations can be readily represented in Markov
Logic; however, classifiers fail to take the correlations into account.

Result 2: Estimating Human Poses. We now evaluate how our model pre-
dicts the poses of its canonical affordance. Each pose can be represented as a
triple index T of the cluster centroids of the torso, lower body and upper body.
We compute a Hamming distance between the index and its nearest neighbor in
the ground-truth poses:

hamming(T ) = min
T ′∈Po∪P̂o

∑

i=1..3

�(Ti = T ′
i ) (2)

where Po and its horizontal mirroring P̂o are the set of ground-truth poses of the
canonical affordance of the object, Ti is an index of the cluster centroid, and �(·)
is an indicator function. This distance metric ranges from 0 to 3, and a smaller
value implies a better estimation of the poses.

Table 2. Performance of Estimating Human Poses (in Hamming distance)

Method nearest neighbor attributes affordances attributes+affordances
Distance 0.928 1.027 0.630 0.527

We compare our method with a nearest neighbor baseline, where we assign the
canonical affordance and a corresponding human pose of its nearest neighbor to
a testing object. The nearest neighbors are defined upon the Euclidean distance
between the VA+CP attributes. We report the mean Hamming distance over
all the testing samples in Table 2. To see how attributes and affordances affect
the performance, we compare it with two methods, where we provide only the
attributes and the affordances as evidence respectively. The best performance
is achieved by combining affordances and attributes together. However, using
affordances alone significantly outperforms its attribute counterpart. This may
be due to the limited number of objects in the KB that have a certain affordance;
thus in many cases, it is sufficient to predict the poses given the affordance.

4.2 Prediction from Human-Object Interactions

A reverse direction towards affordance prediction is to recognize the action and
hypothesize the object in human-object interactions. When actions are seen at a
distance and objects appear small, it is hard to observe object’s visual attributes.
In such cases, human poses and human-object spatial relations provide comple-
mentary information. We demonstrate the effectiveness of our KB in predicting
the actions and the objects from human-object interactions.

Inference. From human action images, we extract the quantized human poses
as evidence and query the affordance labels as well as object attributes. The
affordance label with the highest likelihood is taken as the predicted action. We
perform Maximum a posteriori (MAP) inference on MLN to estimate the most
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play 
banjo 

sit on 
bench 

type on 
typewriter 

pour from 
coffee cup 

ride 
motorcycle 

push 
hand truck 

lift 
hammer 

Fig. 11. Prediction results from human-object interactions. We provide some
examples of correct predictions of the actions and the objects. The last two examples
illustrate two similar poses. Both are predicted as sit on bench using only the poses.
The relative locations in the full model disambiguate those two poses.

likely 0/1 state of each object attribute. The predicted attributes can be used to
retrieve the nearest neighbor among all the testing objects in Euclidean distance.
We further evaluate how human-object spatial relations affect the performance.
The relative locations between humans and objects are extracted from human
action images as described in Fig. 5. We add the quantized locations in the
evidence and perform the same queries.

Testing Data. We collect five human action images for each of the 22 testing
objects from Stanford 40 Actions [36] and Google Image Search. We focus on
one canonical affordance (e.g. riding for motorcycle) for each object.

Results. Fig. 11 provides some prediction results. Our model utilizes the infor-
mation of the poses and relative locations to predict the actions and the objects.

We use prediction accuracy to quantitatively measure whether the model is
able to correctly predict the action and the object in Table 3. One can see that
human poses provide useful information about the actions. However, poses alone
are sometimes insufficient to characterize an action. Human-object spatial rela-
tions disambiguate similar poses and therefore boost the performance. Besides,
our model works better in predicting the affordance labels than the objects. In
cases where humans interact with objects in similar ways, it is hard to tell apart
objects but easier to identify the actions.

Table 3. Predicting Actions and Objects from Human-Object Interactions

Method Action Object
human poses 50.4% 46.2%
poses + locations 81.2% 64.5%

4.3 Why KB - Empirical Results

Partial Observation. Humans are proficient in inferring information given a
few clues. For instance, people can easily identify a gray, heavy animal with a long
trunk as an elephant. The ability of reasoning from partial observation is derived
from the knowledge that connects the dots of various concepts together. In this
section, we demonstrate the robustness of our model against partial observation.
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To evaluate the robustness of our model, we test the performance of our
model in affordance prediction given a randomly selected portion of evidence.
For comparison, we evaluate the performance of the classification-based method.
During testing, a portion of attribute feature dimensions are randomly selected
and zeroed out. Fig. 12 depicts how the performance (mAUC) varies as a larger
portion of attributes become unobserved.
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Ours (Categorical & Physical)

Classification (Visual attributes)

Classification (Categorical & Physical)

Fig. 12. Performance variations
against partial observation. The
x-axis denotes the percentage of un-
observed evidence. The y-axis denotes
the performance (mAUC). The top two
curves correspond to our method. The
bottom two are the classification-based
method. In comparison, the knowledge
base representation is more robust
against partial observation.

We observe that performance drops significantly as information of categori-
cal and physical attributes get removed; while, both models are relatively ro-
bust against the removal of visual attributes. In general, the performance of
classification-based model drops more rapidly than the knowledge-based ap-
proach. This result provides evidence for KB’s ability to utilize its rich structure
for inference against partial observations, while there is no such mechanism built
in traditional classifiers.

Diverse Question Answering. Compared to the classifiers, a KB represen-
tation can enable querying and inferencing of a much larger array of questions.
Given a set of weighted MLN formulae, a user may write arbitrary queries in

Animal

Leather
Head

Furry

Device
Container
Computer

Fig. 13. Examples of question answering. We convert each question into the form
of evidence and queries, where N1 is used for grounding. Predicates with the highest
probabilities computed from MLN inference are presented in the last column as answers
to the queries.
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terms of the entities and rules. To answer these queries, MLN infers the probabil-
ity or the most likely state of each query from the evidence. In Fig. 13, we provide
examples to show the power of the KB in diverse question answering. Note that
in a unified framework, we are able to query with both textual (e.g. isA) and
visual (e.g. hasVisualAttribute) questions. Furthermore, the answers returned by
the KB can also be textual (e.g. hasSize) or visual (e.g. hasVisualAttribute).

5 Conclusion

In this paper, we presented a knowledge-based (KB) representation to reason
about objects, and their affordances in human-object interactions, motivated
by a need to conduct deeper and more diverse reasoning of the heterogeneous
data in the form of images and text. Our preliminary results show that a KB
representation is a powerful tool to organize the rich information of the visual
world, and to allow us to query different types of questions related to objects and
their affordances, compared to a number of traditional classification schemes. A
natural future direction is to extend the KB into a much larger scale for richer
inferences. In this work, we choose to express our data structure and inference
in a Markov Logic Network (MLN). A number of recent advances in database
and machine learning [30,32,4] also point ways to different inference algorithms.
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