A. Experiment Details
A.1. Experiment Setup

We used the Adam optimizer from (Kingma and Ba) for
learning our Successor Representation (SR) model with a
learning rate of le-4 and a mini-batch size of 32. For the
reinforcement learning experiments, we use the discounted
factor v = 0.99 and a replay buffer size of 100,000. The
exploration term e is annealed from 1.0 to 0.1 during the
training process. We run an e-greedy policy (¢ = 0.1) dur-
ing evaluation. We use soft target updates (7 = 0.1) after
every episode. For the easy and medium tasks, we assign
+10.0 immediate reward for task completion, —5.0 for in-
valid actions, and —1.0 for other actions (to encourage a
shorter plan). For the hard task, we train our SR model to
imitate a plan that searches all the receptacles for an object
in a fixed order of visitation based on the spatial locations
of the receptacles. We assign +1.0 immediate reward for
task completion, and an episode terminates as failure if the
agent does not follow the order of visitation in the plan.

A.2. Network Inputs

The input to the SR model consists of three components:
action (action type and argument), agent’s observation (im-
age), and agent’s internal state. The action type is encoded
by a 7-dimensional one-hot vector, indicating one of the
seven action types (Navigate, Open, Close, Pick Up, Put,
Look Up, and Look Down). The action argument is en-
coded by a one-hot vector that has the same dimension as
the number of interactable objects plus one. The first di-
mension denotes null argument used for Look Up and Look
Down actions, and the other dimensions correspond to the
index of each object. RGB images from the agent’s first-
person camera are preprocessed to 84 x 84 grayscale im-
ages. We stack four history frames to make an 84 x 84 x 4
tensor as the image input to the convolutional networks. The
agent’s internal state is expressed by the agent’s inventory,
rotation, and viewpoint. The inventory is a one-hot vector
that represents the index of the held item, with an extra di-
mension for null. The rotation is a 4-dimensional one-hot
vector that represents the rotation of the agent (90 degree
turns). The viewpoint is a 3-dimensional one-hot vector that
represents the tiling angle of the agent’s camera (—30°, 0°,
and 30°).

A.3. Network Architecture

Here we describe the network architecture of our pro-
posed SR model. The convolutional image encoder 6.,
takes an 84 x 84 x 4 image as input. The three convolu-
tional layers are 32 filters of size 8 x 8 with stride 4, 64
filters of size 4 x 4 with stride 2, 64 filters of size 3 x 3
with stride 1. Finally a fully-connected layer maps the out-
puts from the convolutional encoder into a 512-d feature.

The actions encoder 6,,;, and internal state encoder 0,
are both 2-layer MLPs with 512 hidden units. A concate-
nated vector of action, internal state, and image encodings
is fed into two 2-layer MLPs 6, and 6, with 512 hidden
units to produce the 512-d state-action feature ¢ , and the
successor feature 5 ,. We take the dot product of the 512-d
reward predictor vector w and state-action features (succes-
sor features) to compute the immediate rewards (Q values).
All the hidden layers use ReLU non-linearities. The final
dot product layers of the immediate reward and the Q value
produce raw values without any non-linearity.

B. Algorithm Details

We describe the reinforcement learning procedure of the
SR model in Algorithm 1. This training method follows
closely with previous work on deep Q-learning [35] and
deep SR model [24]. Similar to these two works, replay
buffer and target network are used to stabilize training.

C. Action Space

The set of plausible actions in a scene is determined by
the variety of objects in the scene. On average each scene
has 53 objects (a subset of them are interactable) and the
agent is able to perform 80 actions. Here we provide an
example scene to illustrate the interactable objects and the
action space.

Scene #9: 16 items, 23 receptacles (at 11 unique locations),
and 15 containers (a subset of receptacles)

Figure 8. Screenshot of Scene #9

items: apple, bowl, bread, butter knife, glass bottle, egg,
fork, knife, lettuce, mug 1-3, plate, potato, spoon, tomato
receptacles: cabinet 1-13, coffee machine, fridge, garbage
can, microwave, sink, stove burner 1-4, table top
containers: cabinet 1-13, fridge, microwave

actions: 80 actions in total, including 11 Navigation ac-
tions, 15 Open actions, 15 Close actions, 14 Pick Up ac-



Algorithm 1 Reinforcement Learning for Successor Representation Model

1: procedure RL-TRAINING
2 Initialize replay buffer D to size N
3 Initialize an SR network ¢ with random weights 6 = [6,,¢, Ocnn, Omip, Or, 0q, W]
4 Make a clone of € as the target network g
5: for : = 1 : #episodes do:
6 Initialize an environment with random configuration
7 Reset exploration term € = 1.0
8 while not terminal do
9: Get agent’s observation and internal state s; from the environment
10: Compute Qs, o = f(s¢, a;8) for every action a in action space
11: With probability € select a random action a; otherwise, select a; = arg max, Qs, .o
12: Execute action a; to obtain the immediate reward 7; and the next state s,
13: Store transition (s, at, r¢, S¢+1) in D
14: Sample a random mini-batch of transitions (s;, a;,7;, S;+1) from D
15: Compute 7, ¢, q,, and s, o, using 0 for every transition j
16: Compute gradients that minimize the mean squared error between 7; and 7;
17: Compute qﬁsj +1,a0 z/)sj 410> and Qsj +1,a USINg 6 for every transition j and every action a
18: if 5;11 is a terminal state then:
19: Compute gradients that minimize the mean squared error between ;. o, and @s; o,
20: else:
21: Compute gradients that minimize the mean squared error between s, o, and ¢, o; + Vs, o’
22: where a’ = arg max, Q~Sj+17a
23: end if
24: Perform a gradient descend step to update 6
25: end while
26: Anneal exploration term €
27: Soft-update target network 6 using 6
28: end for

29: end procedure

tions, 23 Put actions, Look Up and Look Down.

We have fewer Navigation and Pick Up actions than the
number of receptacles and items respectively, as we merge
some adjacent receptacles to one location (navigation desti-
nation). We also merge picking up items from the same ob-
ject category into one action. This reduces the size of the ac-
tion space and speeds up learning. An important simplifica-
tion that we made is to treat the Navigation actions as “tele-
ports”, which abstracts away from visual navigation of the
agent. The actual visual navigation problem can be solved
as an independent subroutine from previous work [54]. As
discussed in Sec. 3.2, not all actions in the set can be is-
sued given a certain circumstance based on affordance. We
use the PDDL language to check if the preconditions of an

action are satisfied before the action is sent to THOR for
execution.

D. Tasks

We list all the tasks that we have evaluated in the ex-
periments in Table 2. In summary, we evaluated tasks from

three levels of difficulty, with 10 easy tasks, 8 medium tasks,
and 7 hard tasks.
References

[1] D.P Kingma andJ. Ba. Adam: A method for stochastic
optimization. In /CLR, 2015.



Table 2. List of Tasks from Three Levels of Difficulty

Easy

Medium

Hard

O 001NN B W=

,_.
()

open/ close fridge
open/ close cabinet
open/ close microwave
open/ close cabinet
open/ close fridge
open/ close fridge
open/close cabinet
open/close fridge
open/ close microwave
open/ close cabinet

put lettuce, tomato and glass bottle to the sink
put apple, egg and glass bottle to the table top
put glass bottle, lettuce and apple to the table top
put three mugs to the fridge

put three mugs to the table top

put potato, tomato and apple to the sink
put three mugs to the table top

put glass bottle, bread and lettuce to fridge

find bowl and put in sink

find plate and put in cabinet

find lettuce and put in fridge

find glass bottle and put in microwave

find lettuce and put on table top
find glass bottle and put in fridge
find bowl and put in sink




