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My Long-Term Research Goal

Artificial Intelligence (Al) - Intelligence Augmentation (l1A)

building robot intelligence to enrich human intelligence
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Traditional form of automation
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Custom—built human expert specilal-purpose
robots programming behaviors

New form of automation

general-purpose machine learning general-purpose
robots & perception behaviors
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Primitive Skills

perception

action
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Primitive Skills
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Primitive Skills
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Primitive Skills
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Primitive Skills

Challenge #1: Raw sensory data are high-dimensional, noisy, and multimodal.

Challenge #2: Manual annotation of supervision is expensive.
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Primitive Skills

Key idea: self-supervised representation learning from raw sensory data
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Primitive Skills

Key idea: self-supervised representation learning from raw sensory data

~ Optical Flow
5 é s

baby learning by playing robot exploring and collecting data on its own



Self-Supervised Learning
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Self-Supervised Learning: Learning sample etficient policies

Inputs

RGB image

—-ncoder

Force data
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Freeze
500k parameters

Representation

Learn 15k
parameters

3L Policy

Lee*, Zhu*, et al. “Making Sense of Vision and Touch” [CRA19



Self-Supervised Learning: We efficiently learn policies in 5 hours.
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Episode 300 Episode 300 Episode 300

/3% SUCCESS rate /1% success rate 92% success rate
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Self-Supervised Learning: Does Our Representation Generalize?

92% Success Rate

Tested on A

Representation A

Policy A

Lee*, Zhu*, et al. “Making Sense of Vision and Touch” [CRA19



Self-Supervised Learning: Policy Transter

92% Success Rate 62% Success Rate
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Policy does not transtfer

Tested on A Tested on
Representation A Representation A

Policy A Policy A

Lee*, Zhu*, et al. “Making Sense of Vision and Touch” [CRA19



Self-Supervised Learning: Representation Transfer

92% Success Rate 62% Success Rate 92% Success Rate

Policy does not transfer

Tested on A Tested on Tested on

Representation A Representation A Representation A

Policy A Policy A Policy

Lee™, Zhu*, et al. “Making Sense of Vision and Touch”™ ICRA'19




Primitive Skills: Overview of Our Method
Self-Supervised Data Collection Representation Learning Policy Learning

ORGB) Oforce: Orobot f(ORGB: Oforce: Orobot) T[(f()) — a

H
H
H
100k data points 20 epochs on GPU
90 minutes 24 hours

Lee™, Zhu*, et al. “Making Sense of Vision and Touch”™ ICRA'19



Primitive Skills: Selt-Supervised Learning
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Primitive Skills: Selt-Supervised Learning
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Primitive Skills: Selt-Supervised Learning

Can the downstream task inform the learning of representations?
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Vision-Based Tool Manipulation

hammering

Fang, Zhu, et al., RSS'19



Primitive Skills: Vision-Based Tool Manipulation

Sensory
data

representation — action

Fang, Zhu, et al., RSS’19; Qin et al. ICRA’20



Primitive Skills: Vision-Based Tool Manipulation

Sensory
data

encoder action

latent representation
Fang, Zhu, et al. “Task-Oriented Grasping” RSS’19

* high-dimensionality » lack of interpretability



Primitive Skills: Vision-Based Tool Manipulation

sensory

data action

encoder

keypoint representation
Qin et al., “KETO” ICRA20

» compact and informative * human interpretable



KETO: Keypoint Representations for Tool Manipulation

environment
keypoints

effect point

function point ===~ 7", " ‘
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Qin et al. "KETO” ICRA'20



KETO: Keypoint Representations for Tool Manipulation

| environment
For hammering keypoints

1. x¢ Is close to x¢

2. Direction of v aligns with z.

max v"z — [|x; - xe||”

Solving the optimal pose

of object as a QP function point ===~~~

grasp point - - v\,

Qin et al. "KETO” ICRA'20



KETO: Keypoint Representations for Tool Manipulation
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Qin et al. "KETO” ICRA'20



KETO: Keypoint Representations for Tool Manipulation

Sensory
iINputs
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keypoint action execution
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a) initial b) grasping
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generator
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c) manipulation d) completion

Qin et al. "KETO” ICRA'20



KETO: Keypoint Representations for Tool Manipulation

sensory keypoint action execution

iINnputs representation
a) initial b) grasping
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ATy keypoint & action
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model update c) manipulation  d) completion

training data

posﬂve exar:;es negagve examp!es success / failure

End task performance directly supervises representation learning.



Results: Hammering lask




Results: Reaching Task




Results: Quantitative Evaluation
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Keypoints as intermediate representations of tools are effective.

Qin et al. "KETO” ICRA'20



Tool Creation: Robot MacGyvering

Improvising tools for inventive problem solving
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[Nair, Shrivatsav, Erickson, Chernova; RSS'19]

Qin et al. "KETO” ICRA'20



Tool Creation: Robot MacGyvering

Keypoints provides a scaffold for generating tools from object parts.

Pushing Reaching Hammering

B J

score: 0.0536 o score: 0.0518 score: 0.0524

Qin et al. "KETO” ICRA'20



Tool Creation: Robot Creates New Tool for Hammering




Summary - Part |

Self-supervised learning is a powerful tool to scale up

primitive skill learning without human supervision.

Feedback from downstream tasks and structural priors

give rise to more compact and informative representations.

Part |: Primitive Skills Part |l: Long-Horizon Tasks Part [lI: Human-like Learning
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Long-Horizon Tasks

prepare dinner

‘prepare dinner” wash dishes !Cookfood
grasp wash place cut boll

Intractable!

robot primitive skills



Long-Horizon Tasks

prepare dinner

‘prepare dinner” wash dishes !Cookfood
grasp wash place cut boll

Challenge: Task complexity grows exponentially.

Key idea: Leveraging hierarchy and abstraction of long-horizon tasks
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high-level
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log\(/;_tlii\r/qel stack
Current
Observation
RPN
Task Goal Cooked (Cabbage) ﬁ On(Pot, Stove)
On (Cabbage, Plate) Next subgoal

Xu et al. “Regression Planning Networks” NeurlPS'19



Regression Planning Network

Plan 1

In(a, storage)
Clean(a)
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[Waldinger 1975; Korf 1987; Kaelbling ICRA™11]

classical symbolic planning

human-interpretable and long-horizon

symbols and planning domain required

Dataset of Experience

Learned Latent Dynamics

I lz i
\ w7 k\-‘

[Finn et al. ICRA’17; Oh et al. NIPS'15; Hafner et al. ICLR’20]

plan from observations

grounded on raw sensory data

myopic sampling, short-horizon tasks



Regression Planning Network
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[Waldinger 1975; Korf 1987; Kaelbling ICRA’11] [Finn et al. ICRA’17; Oh et al. NIPS'15; Hafner et al. ICLR’20]

classical symbolic planning plan from observations

plan backward in a symbolic space conditioning on the visual observation



Regression Planning Network
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Xu et al. “Regression Planning Networks” NeurlPS'19



Regression Planning Network
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Xu et al. “Regression Planning Networks” NeurlPS'19



Regression Planning Network
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Xu et al. “Regression Planning Networks” NeurlPS'19



Regression Planning Network
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Xu et al. “Regression Planning Networks” NeurlPS'19



Regression Planning Network

Qualitative

(cook 3 dishes with 4 ingredients)

100

80

60

40

20

task success rate

Performance on Unseen Tasks

mEasy mMedium mHard | | |
nd RPN

End-to-End RP-only SS-only

(Pathak et al. 2018)

Quantitative
(the higher the better)

XU et al.

“Regression Planning Networks” NeurlPS'19



Regression Planning Network

Recursively planning backward (regression

planning) on symbolic abstraction Symbolic Task Goal

Method works on visual input without specitying &: _ -7

a planning domain -y - @, © O

Learning from video demonstrations and zero- | Z

shot generalization to new tasks Current & S~ O Q
observation ‘ =~

- e : . Backward Plannin
Low-level primitive skills are modeled as pre- Next Intermediate Subgoal °

defined API calls.

Xu et al. “Regression Planning Networks” NeurlPS'19



Regression Planning Network

Can we learn and plan primitive

skills and task plans jointly”?

7

Low-level primitive skills are modeled as pre-
defined API calls.

Xu et al. "Regression Planning Networks” NeurlPS 2019
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Long-Horizon Tasks




Long-Horizon Tasks: Model-Based Learning

choose action seguence

a,, ......, a,,
\ dynamics :
: s'~f(1|s a) |
L e e e e e e e e - e |
>
i
P Vs

[Deisenroth et al, RSS’'07], [Guo et al, NeurlPS’14], [Watter et al, NeurlPS’15], [Finn et al, ICRA’17], ......



Long-Horizon Tasks: Model-Based Learning

choose action seguence

a,, ......, a,,
P————————— — — -
\ dynamics :
LS ~f(-|s, a) |

Search space increases exponentially.

Modeling all possible interactions is intractable.

[Deisenroth et al, RSS’'07], [Guo et al, NeurlPS’14], [Watter et al, NeurlPS’15], [Finn et al, ICRA’17], ......



Long-Horizon Tasks: Planning in Learned Latent Spaces

choose
z~ p(2)

= Eay

—xIsting methods only perform flat planning.

[lchter et al, ICRA’19], [Kurutach et al, NeurlPS’18], [Co-Reyes et al, ICML’18]



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

CAVIN Planner

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

CAVIN Planner

subgoals

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

CAVIN Planner

actions

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

choose
c~p(c)

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

choose
c~p(c)

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

choose choose
c~p(c) z~p(2)
r===========A |___________';
I : | :
. meta-dynamics 1 | action generator
L e e e e e e e e e e e | o e e e e e e e e - !
® | oo
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Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

choose choose
c~p(c) z~p(2)
Fe- - - - === === ImTT T ~"T-—-———-—- IR |
: meta-dynamics : ' action generator : : dynamics I
| |

L]
- ‘——’

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Hierarchical Planning in Latent Spaces

task-agnostic interaction

Fang et al. “CAVIN” CoRL'19



Long-Horizon Tasks: Cascaded Variational Inference

100
90 w/ Dense Rewards

go I w/ Sparse Rewards

70
60
50
40
30
20
10

Success Rate (%)

‘move away obstacles”

Fang et al. “CAVIN” CoRL'19



Summary - Part |l

Hierarchical planning and symbolic abstraction scale up

to long-horizon manipulation tasks.

High-level plans and low-level skills can be learned

jointly from task-agnostic interactions.

Part |: Primitive Skills Part Il: Long-Horizon Tasks Part [lI: Human-like Learning
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Human-Like Learning: A Lifelong Process

Learning as a lifelong process of active exploration and model building



Human-Like Learning: Harvesting Human Ingenuity

WA ¥

real time . - . itonomous execution

X Narrow-minded </ Creative solutions
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Human-Like Learning: Harvesting Human Ingenuity

RoboTurk: Crowdsourcing Platform for Large-Scale Teleoperation

o-Dol real-time streaming
controller from remote robot

RoboTurk In action

Mandlekar et al. CoRL 2018
roboturk.stanford.edu Mandlekar et al. IROS 2019
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Human Ingenuity in Solution Strategies




Human \ngenwty Is So\utlon Strategies




Emergent Strategies: Alternate Cups and Bowls
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Emergent Strategies: Flip Bowl for Base




Emergent Strategies: 3 Cups for a Stable Platform




111 hours of robot demonstrations

1 week of data collection
Robo [urk
3 dexterous manipulation tasks
Real Robot
non-expert users
Dataset 2144 demonstrations

10x larger than prior work

roboturk.stanford.edu/realrobotdataset
Mandlekar et al. IROS 2019



Human-Like Learning: Three Key Ingredients

A human-like learning agent wil|

Learning to Learn

® ® ® Activated Goal

>< Agent

" Re-use prior knowledge to learn and adapt fast

[Ren et al. UAI'20 (to appear)]

Causal Understanding

~—  Reason about causal and effect from interaction for interaction

[ Task-Conditional |
Policy

: A=l | c :l: LW ]
A &« %
&

-} -
-2"‘“-‘“- -
- e

COmPOSItIOHa"ty [Nair et al. NeurlPS'19 CausalML]

—  Capture the compositional structure of semantics and tasks

[Xu*, Nair*, et al. ICRA’18; Huang~,
Nair*, Xu*, et al. CVPR’19]



Human-Like Learning: Learning to Learn

Meta-reinforcement learning through online task inference
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Ren et al. “OCEAN” UAI'20



Human-Like Learning: Learning to Learn

captures transitions between the subtasks

Local
Zt+42

>

=

@\

Contexts

Local Local
Z¢ Zii1
q¢ qé
Contexts Contexts
O O O O
A ><\L
» TTg Ay —
© St O S¢+1
_ ZGlobal
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O
A
@), O
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§
> O Previous Contexts

Aii2

/65/ represents a mixture of sub-tasks required for the task

® ® ® Activated Goal

>< Agent

Ren et al. "OCEAN" UAI'20



Human-Like Learning: Learning to Learn

Humanoid-Multi-Direc Humanoid-Multi-Goal 4000 Cheetah-Multi-Direc Cheetah-Multi-Vel
1200 -
2000' 1000_ 3000_ —700'
1500 - |
800 2000 - —750-
1000 600-
1000 1
4001 —800- —
500 - /
200 0-
. . . . . . . . —850 . .
2.5 5 1.5 2 4 §) 2 4 2 4
Timesteps (x 1075) Timesteps (x 1075) Timesteps (x 107 6) Timesteps (x 1076)
—— OCEAN (ours) @ —— PEARL —— E-MAML —— ProMP —— RL2

OCEAN is especially effective in long-horizon tasks that involve a sequence of primitive skills.

Ren et al. “OCEAN” UAI'20



Human-Like Learning: Causal Understanding

Learning causal models from interaction for goal-directed tasks in visual environments

Training Step #1
Train causal induction model F
in a set of training environments

Interaction policy i, collects

action  training observational data in environment

environments

k
| Ttrain

observational
data

Nair, Zhu, et al., NeurlPS 2019 Causal ML Workshop



Human-Like Learning: Causal Understanding

Learning causal models from interaction for goal-directed tasks in visual environments

Training Step #1
Train causal induction model F
in a set of training environments

interaction
policy state
mﬂ Causal induction model F predicts
l action . training causal graph from observational data.
| Tl“(rain B - z
obsecr’v?tional causal predicted
ata induction causal
model structure

Nair, Zhu, et al., NeurlPS 2019 Causal ML Workshop



Human-Like Learning: Causal Understanding

Learning causal models from interaction for goal-directed tasks in visual environments

Training Step #1 Training Step #2
Train causal induction model F Fix F, train goal-conditioned policy
in a set of training environments . T in the same environments
interaction ;
policy state
k "
@ram]ﬂ] ; Conditioned on causal graph,

action training

environments :
. state

action goal conditioned policy m

tries to complete the tasks In

goal-
conditioned

policy

environment.

obsecri\;?:onal causal predicted
induction causal
model structure

Nair, Zhu, et al., NeurlPS 2019 Causal ML Workshop



Human-Like Learning: Causal Understanding

Learning causal models from interaction for goal-directed tasks in visual environments

Training Step #1 Training Step #2 Testing

Train causal induction model F

in a set of training environments

IIIIIIIIIIIIIIIIIIIIIIIIIIIII }...llllll...lIllll.lllllII.IIIIIll..llll....llllli-.lllIII...IllII...lllIll-l.llllll.lll.III.IIIII.I..IIIIIl.l
" "

interaction
policy

state

action

- Fix F, train goal-conditioned policy : Fix F, Fix m, evaluate on a test environment
. 1. in the same environments with unseen causal structure

test
environment

k|| gk
Etest ] Etest
training action !

environments : action state
. state

goal-
conditioned

state

action

policy : o
REEN | - 0\
Trrai 0 . | Ttest
|| “train E
. : observational
°bsecri"?t'°"a' causal predicted ' gata  causal predicted
a4 induction causal induction causal

model structure : model structure

Nair, Zhu, et al., NeurlPS 2019 Causal ML Workshop



Human-Like Learning: Causal Understanding

Learning causal models from interaction for goal-directed tasks in visual environments

One-to-One Many-to-One Masterswitch

One-to-Many
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q) v — / »’“ JE——
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)] 3 0.4 0.4 , 0.4
0.0{ F———— | » | 0.0 ¢ | , ool | | |
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Number of Seen Causal Structures Number of Seen Causal Structures Number of Seen Causal Structures

wm= Memory  msflss Memory (RL/Low Dim)  ==f== TCIN wefpes |CIN (NO Attn)  wefpmm |CIN (Ours) ws=imm QOracle

policy success rate in (unseen) light-switch environments

Nair, Zhu, et al., NeurlPS 2019 Causal ML Workshop



Human-Like Learning: Compositionality

Modeling complex tasks as compositional program structures

meta-learning

model

single video policy for the
demonstration demonstrated task

Xu*, Nair®, et al. ICRA'18; Huang®, Nair*, Xu*, et al. CVPR'19; Huang et al. IROS19



Neural Task Programming (NTP): Hierarchical Policy Learning as Neural Program Induction U7, Nairt, et al. ICRA 2018
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Human-Like Learning: Compositionality

Modeling complex tasks as compositional program structures
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Summary - Part lli

Learning from humans: Harvesting human ingenuity

through teleoperated crowdsourcing with RoboTurk

Learning like a human: Building agents that learn to learn,

reason about causal & effect, and exploit compositionality

Part | Primitive Skills Part |l: Long-Horizon Tasks Part |ll: Human-like Learning
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