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Traditional form of automation




General-purpose robot hardware
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My research goal:

pbuilding robot intelligence to enrich human intelligence




Traditional form of automation
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custom-built human expert special-purpose
robots programming behaviors

New form of automation

general-purpose general-purpose
robots behaviors



Traditional form of automation

structured environment

custom-pbuilt numan expert specilal-purpose
robots orogramming behaviors

New form of automation
unstructured environment

general-purpose - ) general-purpose
robots behaviors



Traditional form of automation
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custom-built human expert specilal-purpose
robots programming behaviors

New form of automation

general-purpose machine learning general-purpose
robots & perception behaviors



closing the perception-action loop

;i»'%

autonomousexecution

'Sa et al. IROS 2014] ’ [Levme et al. JMLR 2016] 1 [Bohg et al. ICRA 2018]

[Gibson 1979; Bajcsy 1988; Ballard 1991; Espiau et al. 1992; Hutchinson et al. 1996; Hamel & Mahony 2002; Kragic & Christensen 2002;
Jonschkowski & Brock 2015; Levine et al. 2016; Agrawal et al. 2016; Bojarski et al. 2016; Finn & Levine 2017; Florence et al. 2018]



closing the perception-action loop

with machine learning & perception in robotics

Perceive Perceive

Act
Act

: Act
Perceive

[Sa et al. IROS 2014] [Levine et al. JIMLR 2016] [Bohg et al. ICRA 2018]

[Gibson 1979; Bajcsy 1988; Ballard 1991; Espiau et al. 1992; Hutchinson et al. 1996; Hamel & Mahony 2002; Kragic & Christensen 2002;
Jonschkowski & Brock 2015; Levine et al. 2016; Agrawal et al. 2016; Bojarski et al. 2016; Finn & Levine 2017; Florence et al. 2018]



perception

Perception is a weak link in the loop.

“Clean” kitchen for state-of-the-art robotics "Messy” kitchen in the real world



perception

scene understanding

man.n.01
an adult person who is male — === - >
(as opposed to a woman)
' g m ) ~
passenger.n.01 o
a traveler riding in a vehicle ~
who is not operating it

person.n.01
a human being

.....

travel.v.01
< change location; move,
,’ travel, or proceed
7’
- 4
clydesdale.n.01 /A ] ride.v.02 e
heavy feathered-legged AN E, | o be carried or travel on or in
breed of draft horse B ) ' a vehicle
originally from Scotland N
\ clydesdale
\ ¢
\ Ea = e
o horse.n.01
solid-hoofed herbivorous
quadruped domesticated green
since prehistoric times carriage.n.02 green.a.01

of the color between blue
and yellow in the color
spectrum

a vehicle with wheels drawn
by one or more horses

ICCV'15, CVPR'17a, CVPR'19

vision & language

Where

does this Why is there
scene take foam?

place? A) Because of a wave. v/

B) Because of a boat.
C) Because of a fire.
D) Because of a leak.

A) In the sea. v/
B) In the desert.
C) In the forest.

D) On a lawn.

What is

the .

A) Surfing. v/ standing on?

B) Sleeping. A) On a .V
C) Running. B) On a table.

D) Eating. C) On a garage.

D) On a ball.

Which paw is lifted?

CVPR16, IJCV'17, CVPR'17b

affordance reasoning

ECCV'14, arXiv'15



W a b|g Wh|te bowl

Johnson et al CVPR'16; Krishna, Zhu, et al. [JCV'17 N L g
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4 Q: When was the picture taken?

b\

A: In the daytime.

,' o -
& \ O
g iom I T \
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Q: What color is the countertop?

’

Zhu et al. CVPR'16, Zhu et al. CVPR'17
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Choy, Fei-Fei, CVPR'17

Xu ihﬁ,




general-purpose

action
robot
0,
hierarchical
tasks
sequential .
orimitive tasks

skills




general-purpose
robot

closing the perception-action loop
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RSS'18 CoRL'18 CoRL'18

stack

push grasp

place pull

primitive
skills




general-purpose
robot

0

closing the perception-action loop

‘get apple from fridge”

“put bowl In the sink”

seguential
tasks




general-purpose
robot

0

closing the perception-action loop

“prepare dinner’

ICRA'18 CVPR'19

—
hierarchical

tasks

N\




general-purpose
robot

closing the perception-action loop

humanlike

Ongoing and Future Work

learning robot

o



Part |: Primitive Skills

[Zhu et al., RSS 2018] Reinforcement and Imitation Learning |...]

[Mandlekar, Zhu et al., CoRL 2018] RoboTurk: A Crowdsourcing Platform for Robotic Skill Learning [...]

[Zhu™, Fan™ et al., CoRL 2018] SURREAL: Open-Source Reinforcement Learning Framework [...]

Part I: Primitive Skills Part |l: Sequential Tasks Part |ll: Hierarchical Tasks



Primitive SKkills (

Reaching, Grasping, Stacking, etc.)

sensory data

action

motor command

ge’] Yieq O0dd -Hpei)



Primitive SKills (Reaching, Grasping, Stacking, etc.)

Challenge: Raw sensory data are high-dimensional, noisy, and multimodal.

End-to-end learning of robust representations for control

sensory data motor command



Learning Primitive Skills in Robotics

reinforcement learning (RL)

learning through trial-and-error

requiring a lot of training data

[Mahadevan & Connell 1992; Gullapal
& Stone 2004; Kober & Peters 2009; T

| et al. 1994; Atkeson 1994:; Schaal 1996; Bagnell & Schneider 2001; Smart & Kaelbling 2002; Ko

N|

neodorou et al. 2010; Levine et al. 2015; Gu et al. 2016; Peng et al. 2017; Kalashnikov et al. 2018]



Learning Primitive Skills in Robotics

reinforcement learning (RL) imitation learning (IL)

learning from demonstrations

imited by a suboptimal teacher

[Schaal 1996; Pollard & Hodgins 2002; Abbeel & Ng 2004; Brian et al. 2008; Pastor et al. 2009; Ross et al. 2011; Akgun et al. 2012; Bagnell
2015; Finn et al., 2016; Rahmatizadeh et al., 2017; James et al., 2017; Sermanet et al. 2017; Menda et al. 2017; Le Paine et al. 2018]



Learning Primitive Skills in Robotics

reinforcement learning (RL) imitation learning (IL)

combined (RL+IL)

learning through trial-and-error learning from demonstrations demonstrations offer guidance

imited by a suboptimal teacher better performance by trial-and-error

[Price & Boutilier 2003; Bentivegna et al. 2004; Latzke et al. 2007; Conn & Peters 2007; Ross & Bagne

2017; Vecerik et al. 2007; Rajeswaran et al. 2018; Cheng et al. 2018; Nair et al. 2018; Pfeiffer et al. 201

| 2014: Kumar et al. 2016; Sun et al.
8; Codevilla et al. 2018]



Reinforcement and Imitation Learning

behavioral cloning warm start

Object Relocation

[Rajeswaran et al. RSS 2018]
Ground-truth states

iInverse reinforcement learning

autonomous execution
1x real-time

: -‘-_,, 7_ ' Y
| oUr method
|0Esamples’from qmit)

[Finn et al. ICML 2016]
Short-horizon tasks

data augmentation

[Nair et al. ICRA 2018]

Fixed objects

Stack 3
Sparse
99% success



Reinforcement and Imitation Learning

Ours Prior work

Raw pixel inputs Ground-truth states
(RGB camera)

Long-horizon tasks Short-horizon tasks
(each task takes ~1min)

Object variation Fixed objects

rocedural generation
Task: Car 2 Red & Plane - Green (P Hraly on)

Our trained model

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning

Effective RL + IL = Algorithm + Data

Task: Car 2 Red & Plane - Green

Our trained model

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning: Algorithm — Adversarial Learning’

D, (s;) discriminator objective

Dy, predicts 0 if policy and 1 if demo

object-centric representation

adversarial learning objective

policy 7g : to fool the discriminator —©PJect-centric

. representation
generated demonstration A\
trajectories trajectories N

min max E, . [log Dy, (s)] + Er, [log(1 — Dy(s))]

0
1Goodfellow et al. 2014: Ho & Ermon, 2016 Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018

%/—/

discriminator Dy, : to tell policy apart from demonstration



Reinforcement and Imitation Learning: Algorithm — Adversarial Learning’

D, (s¢) discriminator objective

Dy, predicts 0 if policy and 1 if demo
discriminator

A IL reward:  71L(S¢,ar) = —log(1l — Dy(st))

generated demonstration E
trajectories trajectories - L
= strong discriminator
E; bad policy weak discriminator
- good policy
O 1
Dy, score on policy

1Goodfellow et al. 2014: Ho & Ermon, 2016 Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning: Algorithm — Adversarial Learning’

D, (s¢) discriminator objective

Dy, predicts 0 if policy and 1 if demo
N Lreward:  riu(si, ) = ~log(1 ~ Dy(50)

object-centric representation

RL reward: TRL(St, at)

generated demonstration RL + IL reward:
trajectories trajectories
T'RL+IL — )\TIL(Sta Clt) T (1 — )\)TRL(Stv Clt)

1Goodfellow et al. 2014: Ho & Ermon, 2016 Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018

imitation reinforcement



Reinforcement and Imitation Learning: Algorithm

pixel
observation

joint
proprioceptive velocity
leature distributed policy gradient method
trained on TRL+IL
Input 64 x 64 RGB pixel observation
positions and velocities of arm joints and grippers
Output 9-DoF joint velocities at 20Hz

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, /7552018



3D motion controller physics engine real environment

I I I B l i I b | l i ‘

=

Imitation

simZ2real

S
=
R

Collecting human Training in Running on
demonstrations simulation real robot

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



clearing table

block lifting block stacking with blocks

clearing table
with a box

pouring liquid order fulfillment

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning: Algorithm

Task Reward

Random  RL L RL + IL Reinforcement Imitation ours
(RL) (IL) (RL+IL)

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning: Algorithm

Result: Emergent strategies from trial-and-error

demonstrated novel solution #1 novel solution #2
solution “grasp two blocks “lift both blocks together
from the top” with three fingers”

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning: Algorithm

Result: Zero-shot sim-to-real policy transter

“ A

fam | P 3 | \ 9

visual & dynamics randomization real-robot deployment

Zhu, Wang, Merel, Rusu, Erez, Cabi, Tunyasuvunakool, Kramar, Hadsell, de Freitas, Heess, 552018



Reinforcement and Imitation Learning

New algorithm that learns dexterous primitive skKills

Effective RL + IL = Algorithm + Data

How can we collect demonstrations for diverse skills?



Reinforcement and Imitation Learning: Data

RoboTurk: Crowdsourcing Platform for Large-Scale Demonstration Collection

il RoBOTURK

q — \

o-Dok real-time streaming
controller from remote robot

RoboTurk In action

roboturk.stanford.edu Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018




Reinforcement and Imitation Learning: Data

RoboTurk Pilot Dataset

137.5 hours of demonstrations
22 hours of total platform usage

2218 successful demonstrations

teleoperated demonstrations

surreal.staniord.edu Zhu*, Fan*, Zhu, Liu, Zeng, Gupta, Creus-Costa, Savarese, Fei-Fei, CoRL 2018
roboturk.stanford.edu Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018




Reinforcement and Imitation Learning: Data

_ Reinforcement and Imitation Learning
RoboTurk Pilot Dataset 1000

Q0
)
@)

137.5 hours of demonstrations

®))
-
O
o

N
@,
O
o
o

22 hours of total platform usage

N
)
@)

Task Performance (reward)

2218 successful demonstrations

0O C
O 1 10 100 1000
Pure RL Number of Demonstrations
surreal.staniord.edu Zhu*, Fan*, Zhu, Liu, Zeng, Gupta, Creus-Costa, Savarese, Fei-Fei, CoRL 2018

roboturk.stanford.edu Mandlekar, Zhu, Garg, Booher, Spero, Tung, Gao, Emmons, Gupta, Orbay, Savarese, Fei-Fei, CoRL 2018




Robo Turk on Physical Robots



RoboTurk for

everyone, everywhere




Summary - Part |

Combining reinforcement and imitation learning to learn

primitive skills from raw sensory inputs

Scaling up demonstration collection with teleoperated

crowdsourcing using the RoboTurk platform

Part |: Primitive Skills Part |l: Sequential Tasks Part |ll: Hierarchical Tasks



Part Il: Sequential Tasks

o o~

[Zhu et al., ICRA 2017] Target-driven Visual Navigation |[...]

[Zhu et al., [CCV 2017] Visual Semantic Planning [...]

Part I: Primitive Skills Part |l: Sequential Tasks Part Ill: Hierarchical Tasks



Sequential Tasks

“put bowl Into

microwave - - _ Fie o2

e — - — S )

grasp bowl poull door place bowl push door

task ‘put bowl into microwave”

planning

grasp bowl pull door place bowl push door

robot primitive skills seqguential tasks



Sequential Tasks

Challenge: very large space of sequential tasks

Sharing and transferring knowledge across tasks

grasp task e —Be —md ——
tack p\anning “put bowl into microwave” e
stac
ush
P NN — —p = )
oull L L
place . R

— | e =

robot primitive skills millions of tasks, millions of sequences



Prior knowledge is used to learn new tasks faster.

orior
knowledge

—

similar new task

Piaget 1977; Bernstein et al. 1988; Adolph & Berger, 2006; Tuckman & Monetti, 2011; Lake et al., 2016; Tsividis et al., 2017; Dubey et al., 2018



ransfer Learning

source tasks target tasks

@ Transfer knowledge @

to similar tasks

— o —

Daumé Il ACL 2007; Bingel & Sggaard £EACL 2017; Bousmalis et al. NV/PS52016; Ganin & Lempitsky /CML 2015; Ganin et al. JMLF 2016; Kirkpatrick et al. PNAS 2017; Li & Hoiem PAM/2017; Luo et al. N/IPS 2017
Caruana /CML 1993; Baxter ML 1997; Duong et al. ACL 2015; Schaul et al. /CML 2015; Parisotto et al. /CLA2016; Long et al. N/PS 2017; Hashimoto et al. EMNLP2017; Rusu et al. CoAL 2017; Lu et al. CVPR 2017




ransfer Learning

Object Detection CNN pretrained o
- | Capt : CNN + RNN .
FactRENN)  Smmstm] on imageNet T O Atari games
=
START “straw” “hat” grld WOrldS

Word vectors pretrained

[credit: CS231N @ Stanford] with word2vec

Transfer Learning in Computer Vision Transfer Learning in Interactive Tasks
[Zeiler & Fergus 2014; Mahendran & Vedaldi 2015; Huh et al. 2016] [Rusu et al. 2016; Parisotto et al. 2016; Oh et al. 2017; Barreto et al. 2018]

pervasive limited



ransfer Learning
We need a new platform!

Object Detection CNN pretrained o
3 = — | Capt : CNN + RNN :
(Fast R-CNN) Ok == P — mage Captioning t Atari games
START “straw” “hat” grld WOrldS

Word vectors pretrained

[credit: CS231N @ Stanford] with word2vec

Transfer Learning in Computer Vision Transfer Learning in Interactive Tasks
[Zeiler & Fergus 2014; Mahendran & Vedaldi 2015; Huh et al. 2016] [Rusu et al. 2016; Parisotto et al. 2016; Oh et al. 2017; Barreto et al. 2018]

pervasive limited



AI2-THOR: A New Platform for Visual Al aizthor.allenai.ora  AKI2 | NOr




Al2-THOR: A New Platform for Visual Al aizthor.allenai.ora  AKI2 | NOr

* changing viewpoints
x walking and jumping
x* applying forces

x* picking & placing

* opening & closing

* developed in Unity 3D game engine

Zhu, Mottaghi, Kolve, Lim, Gupta, Fei-Fei, Farhadi, /CRA, 2017



Visual Task Planning

Putting bowl into microwave

agent’'s view

_ —,1‘5‘;'3'
Yy
s (2 /
= /
./
P
I/,

Interactive Visual Environment

Output a sequence of high-level commands

<start> navigate to table  pick up bowl Open microwave put bowl

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Target-driven Visual Navigation

Output
target-driven navigation policy™
V|Sua % Tar: microwave
observation
farget

* Domain adaption with model trained in Al2-THOR

Zhu, Mottaghi, Kolve, Lim, Gupta, Fei-Fei, Farhadi, /CFRA, 2017



Visual Task Planning Putting bowl T

——  Navigate to Table
INto Mmicrowave

Goal-directed policy learning

action goal

m(als, g) = argmax Q(s, a, g)

State

expected sum of future rewards

approximated by neural network

The goal-conditional Bellman equation |
next action

Q"(s,a,9) = Exlry(s,a) + ymaxQ™(s', @', g)

iImmediate reward of task g next state

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

Key idea: decoupling environment dynamics and goal specification

goal-directed
Q-value

Q(s,a,g)

Dayan 1993; Kulkarni et al., 2016

N\
N\

successor feature!

P(s,a)’

W4 goal embedding

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

Key idea: decoupling environment dynamics and goal specification

reward state-action feature  goal embedding

successor feature’

Q(Siv aiag) -

2
2
~.
A
=
Q
N\
Vs
.
Q
.
N—"

||
([
\QN.
|
-
N
o
_|
<
=
u

*J[Z ”Yi_t¢(87;, ai)T]Wg = (i, ai)ng

Dayan 1993; Kulkarni et al., 2016 Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

Key idea: decoupling environment dynamics and goal specification

reward state-action feature  goal embedding

Q-value successor feature’

Dayan 1993; Kulkarni et al., 2016 Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

goal-directed
Q-value

Q(s,a,g)

N\
N\

goal-independent

environment
dynamics

P(s,a)’

action goal

m(als,g) = argmax Q(s,a, g)

state

goal-specific

Wy goal
specification

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

searching for apple

Q(S7 a, g())

N\
N\

shared
across tasks

P(s,a)’

action goal

m(als,g) = argmax Q(s,a, g)

state

Wgo searching for apple

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

searching for banana

Q(S7 a, gl)

N\
N\

shared
across tasks

P(s,a)’

action goal

m(als,g) = argmax Q(s,a, g)

State

ng searching for banana

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Visual Task Planning

putting apple to fridge

Q(Sa a, 92)

N\
N\

shared
across tasks

P(s,a)’

action goal

m(als,g) = argmax Q(s,a, g)

state

W o  putting apple to fridge

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Trained Task: searching for a bowl

Scene Object -
(s, a)
| | X
!‘l“ lkjifli:iﬂm ‘ J\ A SUCCESSOr Wy
feature
goal
embedding
shared
* | X
(i) ||\ W,
| "l”ﬂ 7
W new goal
embedding

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Fast Policy Transtfer with New Goal Embedding

Task: Search for an egg and put it into the sink 0.8
— Transfer learning

successful failed e Learning from scratch

success rate (%)
O
AN

O
N

0 5 10 15 20 25 30 35 40 45
Transfer Learning Learning from scratch training iterations (k)

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, /CCl/2017



Summary - Part |l

Part |

Primitive Skills

Developed a 3

D virtual world (Al2-THO

R) to study embodied

agents in interactive visual environments

Transfer learning between sequential tasks through the

decoupling of environment dynamics and goal specitication

Part Il

. Sequential Tasks

Part Ill; Hierarchical Tasks



w T Part lll: Hierarchical Tasks \
\_ y, . c/

[Xu*, Nair*, Zhu, et al. ICRA 2018] Neural Task Programming (NTP) [...]

[Huang™, Nair*, Xu*, Zhu et al. CVPR 2019] Neural Task Graphs (NTG) [...]

Part I: Primitive Skills Part |l: Sequential Tasks Part |ll: Hierarchical Tasks



Hierarchical Tasks

“put bowl Into

microwave”

grasp bowl pull door place bowil

‘prepare dinner” Complex real-world tasks are hierarchical.




Hierarchical Tasks

Challenge: Task complexity grows exponentially.

‘prepare dinner”

Intractable!



Hierarchical Tasks

Challenge: Task complexity grows exponentially.

_everaging the compositionality of hierarchical tasks

prepare dinner

‘prepare dinner” wash dishes ! cook food

grasp wash place cut boll



Videos supply massive knowledge to solve new tasks.

THEVERGE  recH - SCIENCE - CULTURE - CARS - REVIEWS - LONGFORM ~ VIDED  MORE

NOVEMBER 7, 2018

v B 8
Many Turn to YouTube for
o . . . Children’s Content, News, How-To
Half of YouTube viewers use it to learn how to do Lessons
things they've never done
Some of us are on there just to pass the time, though An analysis of videos suggested by the site's recommendation
By Patricia Herandez | @xpariciah | Nov 7, 2018, 12:36pm EST engine finds that users are directed toward progressively
f W [ e longer and more popular content

BY AARON SMITH, SKYE TOOR AND PATRICK VAN KESSEL

how to

how to make slime

how to tie a tie

how to draw

how to basic

how to get boogie down dance
how to cake it

how to train your dragon 3

how to get the galaxy skin in fortnite

how to make slime without glue

how to solve a rubik's cube (MaaHoo Studio/Getty Images)

Report search predictions

Source: The Verge, Pew Research Center



Humans learn efficiently from video demonstrations.

Imitation of Televised Models by Infants
Andrew N. Meltzoft, Child Development 1988

Babies (14-24 months) can learn by imitating

demonstrations from the TV screen.

Meltzoff & Moore 1977; Meltzoff & Moore 1989, Meltzoff 1988



One-Shot Imitation Learning from Videos

meta-learning

model

single video policy for the
demonstration demonstrated task

Xu*, Nair*, Zhu, Gao, Garg, Fei-Fei, Savarese. /CRA 2018



One-Shot Imitation Learning from Videos

supervision

.

meta-learning
model

policy for the
demonstrated task

a lot of training videos
(seen tasks)

Xu*, Nair*, Zhu, Gao, Garg, Fei-Fei, Savarese. /[CFA 2018



One-Shot Imitation Learning from Videos

meta-learning

model

single test video policy for the
(unseen task) demonstrated task

Xu*, Nair*, Zhu, Gao, Garg, Fei-Fei, Savarese. /CRA 2018



One-Shot Imitation Learning from Videos

i

e | ¥ | 2w | - §" A wll A adn

—

|
- g _— L g e > A = =
] L e b i ks _ S5 |G gt Bl ol ol MR | L o e e 2l Sl S ac @O :;'r okt P
= - =Y e Sl e 1 R = A e
3 o 2 4 : = sormtep = o5 1
Lty R e s e >

[Duan et al. 17; Finn et al. 2017; Wang et al. 2017; Yu et al. 2018]

modeling demonstration
as a flat sequence

2R K.

HR | oD oA oA Al A :

|
Y - ? e v s " | ! I s o, vk . S5 Al 5 & e i oo s 4 -
e B O R |y e i LR e i B G g e el BB | o i el o s oo @ sl Bl 5
5 S & ' s == T : ’ ot £ = = TEY
e i oy m—— e ..

modeling demonstration
as a compositional structure

Xu*, Nair*, Zhu, Gao, Garg, Fei-Fei, Savarese. /ICRA 2018



. S —
Move_to (Blue)

Grip (Blue)

Neural Task Programming (NTP): Hierarchical Policy Learning as Neural Program Induction
AR ol . T _H ey WY _H " %) -4 z ] % I W H W HT ¥
Env. Observation Input Task Spec. —I Env. Observation Input Task Spec.
Pin: block_stacking eoe: False |__________1____________________-__--—--"—"—-We— > Pin: block_stacking EOP: False — - — -
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One-Shot Imitation Learning from Videos: Neural Task Programming (NTP)
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One-Shot Imitation Learning from Videos: Neural Task Programming (NTP)
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One-Shot Imitation Learning from Videos: Neural Task Programming (NTP)
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One-Shot Imitation Learning from Videos: Neural Task Programming (NTP)
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One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)
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One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)
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One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)
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One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)
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One-Shot Imitation Learning from Videos: Neural Task Graphs (NTG)
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Summary - Part

Extracting knowledge about the compositional structure of

hierarchical tasks from video demonstrations

black box
VS.

Meta-learning models with compositional priors generalize

@B‘ better than black-box models

task graph

Part I: Primitive Skills Part |l: Sequential Tasks Part |ll: Hierarchical Tasks
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Closing the Perception-Action Loop

orimitive skills

[IRSS'18, CoRL'18a, CoRL'18b]

- - seguential tasks

- - [ICRA’17, ICCV’17]

B hierarchical tasks

[ICRA'18, CVPR'19]

Perception
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Interactive visual
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unstructured
video data

Action
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joint
forque
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command

task
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Learning
Method
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Ongoing and Future Work
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Future Direction: Multimodal Perception Beyond Vision

Learning coherent representations of multimodal information for control

Reaching Alignment Insertion

Fz (N)

time (ms)
combining vision and force for manipulation

Lee*, Zhu*, Srinivasan, Shah, Savarese, Fei-Fei, Garg, Bohg. /{CRA 2079 (Best Conference Paper)



Future Direction: Learning Knowledge of the World from Interaction

.
semantic

[Zhu et al. CVPR’16; Krishna,
Zhu et al. [UCV’'17: Xu, Zhu et al.
CVPR’17; Zhu et al. CVPR’17]

geometric

[Chen, Xu, Zhu et al. CVPR’19]

what would
happen if ...?

vsical 4,000 pounds § ‘
PNysICa 25 mph causa

[Zhu et al. ECCV’14;

[ongoing work]
Fang, Zhu et al. RSS’'18]

“To accelerate or to brake”?”


Yuke Zhu



Future Direction: Integrating Perception and Knowledge for Autonomy

Learning

machine learning
& perception

3k

Design
robots & @
SEensors @
[Fang, Zhu et al. RSS'18]  [Wang, Xu, Zhu et al. CVPR'19] Modeling
% mechanics
& control

Data-driven + Model-driven Methods

ongoing work broader collaboration
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