Closing the Perception-Action Loop

Towards General-Purpose Robot Autonomy

Yuke Zhu

Traditional form of automation

custom-built robots

human expert programming

special-purpose behaviors

New form of automation

general-purpose robots

general-purpose behaviors

Traditional form of automation

custom-built robots

structured environment

human expert programming

special-purpose behaviors

New form of automation

general-purpose robots

unstructured environment

general-purpose behaviors

Traditional form of automation

custom-built robots

human expert programming

special-purpose behaviors

New form of automation

general-purpose robots

machine learning & perception

general-purpose behaviors

[Gibson 1979; Bajcsy 1988; Ballard 1991; Espiau et al. 1992; Hutchinson et al. 1996; Hamel & Mahony 2002; Kragic & Christensen 2002; Jonschkowski & Brock 2015; Levine et al. 2016; Agrawal et al. 2016; Bojarski et al. 2016; Finn & Levine 2017; Florence et al. 2018]

with machine learning & perception in robotics

Perception is a weak link in the loop.

"Messy" kitchen in the real world

general-purpose robot

hierarchical tasks

primitive skills sequential tasks

general-purpose robot

general-purpose robot

hierarchical tasks

primitive skills sequential tasks

general-purpose robot

Ongoing and Future Work

humanlike learning robot

primitive sequential tasks skills tasks

Part I: Primitive Skills

[**Zhu** et al., RSS 2018] Reinforcement and Imitation Learning [...]

[Mandlekar, Zhu et al., CoRL 2018] RoboTurk: A Crowdsourcing Platform for Robotic Skill Learning [...]

[Zhu*, Fan* et al., CoRL 2018] SURREAL: Open-Source Reinforcement Learning Framework [...]

Primitive Skills (Reaching, Grasping, Stacking, etc.)

Primitive Skills (Reaching, Grasping, Stacking, etc.)

Challenge: Raw sensory data are high-dimensional, noisy, and multimodal.

End-to-end learning of robust representations for control

Learning Primitive Skills in Robotics

reinforcement learning (RL)

learning through trial-and-error

requiring a lot of training data

Learning Primitive Skills in Robotics

reinforcement learning (RL)

learning through trial-and-error

requiring a lot of training data

imitation learning (IL)

learning from demonstrations

limited by a suboptimal teacher

[Schaal 1996; Pollard & Hodgins 2002; Abbeel & Ng 2004; Brian et al. 2008; Pastor et al. 2009; Ross et al. 2011; Akgun et al. 2012; Bagnell 2015; Finn et al., 2016; Rahmatizadeh et al., 2017; James et al., 2017; Sermanet et al. 2017; Menda et al. 2017; Le Paine et al. 2018]

Learning Primitive Skills in Robotics

reinforcement learning (RL)

learning through trial-and-error

requiring a lot of training data

imitation learning (IL)

learning from demonstrations

limited by a suboptimal teacher

combined (RL+IL)

demonstrations offer guidance

better performance by trial-and-error

[Price & Boutilier 2003; Bentivegna et al. 2004; Latzke et al. 2007; Conn & Peters 2007; Ross & Bagnell 2014; Kumar et al. 2016; Sun et al. 2017; Vecerik et al. 2007; Rajeswaran et al. 2018; Cheng et al. 2018; Nair et al. 2018; Pfeiffer et al. 2018; Codevilla et al. 2018]

Reinforcement and Imitation Learning

behavioral cloning warm start

inverse reinforcement learning

data augmentation

[Rajeswaran et al. RSS 2018]

Ground-truth states

[Finn et al. ICML 2016]

Short-horizon tasks

[Nair et al. ICRA 2018]

Fixed objects

Reinforcement and Imitation Learning

Task: Car → Red & Plane → Green

Our trained model

Ours

Raw pixel inputs (RGB camera)

Long-horizon tasks (each task takes ~1min)

Object variation

(procedural generation)

Prior work

Ground-truth states

Short-horizon tasks

Fixed objects

Reinforcement and Imitation Learning

Effective RL + IL = Algorithm + Data

Task: Car → Red & Plane → Green

Our trained model

Reinforcement and Imitation Learning: Algorithm – Adversarial Learning¹

Reinforcement and Imitation Learning: Algorithm – Adversarial Learning¹

discriminator objective

 D_{ψ} predicts ${f 0}$ if policy and ${f 1}$ if demo

IL reward: $r_{\text{IL}}(s_t, a_t) = -\log(1 - D_{\psi}(s_t))$

Reinforcement and Imitation Learning: Algorithm – Adversarial Learning¹

discriminator objective

 D_{ψ} predicts ${f 0}$ if policy and ${f 1}$ if demo

IL reward: $r_{\text{IL}}(s_t, a_t) = -\log(1 - D_{\psi}(s_t))$

RL reward: $r_{\rm RL}(s_t, a_t)$

RL + IL reward:

$$r_{ exttt{RL+IL}} = \lambda r_{ exttt{IL}}(s_t, a_t) + (1 - \lambda) r_{ exttt{RL}}(s_t, a_t)$$
 imitation reinforcement

Reinforcement and Imitation Learning: Algorithm

Input 64 x 64 RGB pixel observation positions and velocities of arm joints and grippers

Output 9-DoF joint velocities at 20Hz

imitation

physics engine

real environment

Collecting human demonstrations

Training in simulation

Running on real robot

block lifting

clearing table with a box

block stacking

pouring liquid

clearing table with blocks

order fulfillment

Reinforcement and Imitation Learning: Algorithm

Reinforcement and Imitation Learning: Algorithm

Result: Emergent strategies from trial-and-error

demonstrated solution

novel solution #1

"grasp two blocks
from the top"

novel solution #2

"lift both blocks together with three fingers"

Reinforcement and Imitation Learning: Algorithm

Result: Zero-shot sim-to-real policy transfer

visual & dynamics randomization

real-robot deployment

Reinforcement and Imitation Learning

New algorithm that learns dexterous primitive skills

How can we collect demonstrations for diverse skills?

Reinforcement and Imitation Learning: Data

RoboTurk: Crowdsourcing Platform for Large-Scale Demonstration Collection

RoboTurk in action

Reinforcement and Imitation Learning: Data

RoboTurk Pilot Dataset

137.5 hours of demonstrations

22 hours of total platform usage

2218 successful demonstrations

teleoperated demonstrations

Reinforcement and Imitation Learning: Data

RoboTurk Pilot Dataset

137.5 hours of demonstrations

22 hours of total platform usage

2218 successful demonstrations

Summary - Part I

Combining reinforcement and imitation learning to learn primitive skills from raw sensory inputs

Scaling up demonstration collection with **teleoperated crowdsourcing** using the RoboTurk platform

Part II: Sequential Tasks

[Zhu et al., ICRA 2017] Target-driven Visual Navigation [...]

[Zhu et al., ICCV 2017] Visual Semantic Planning [...]

Sequential Tasks

"put bowl into microwave"

robot primitive skills

sequential tasks

Sequential Tasks

Challenge: very large space of sequential tasks

Sharing and transferring knowledge across tasks

robot primitive skills

millions of tasks, millions of sequences

Prior knowledge is used to learn new tasks faster.

prior knowledge

similar new task

Transfer Learning

Transfer Learning

Transfer Learning in Computer Vision

[Zeiler & Fergus 2014; Mahendran & Vedaldi 2015; Huh et al. 2016]

pervasive

Atari games

grid worlds

Transfer Learning in Interactive Tasks

[Rusu et al. 2016; Parisotto et al. 2016; Oh et al. 2017; Barreto et al. 2018]

limited

Transfer Learning

Transfer Learning in Computer Vision

[Zeiler & Fergus 2014; Mahendran & Vedaldi 2015; Huh et al. 2016]

pervasive

We need a new platform!

grid worlds

[Rusu et al. 2016; Parisotto et al. 2016; Oh et al. 2017; Barreto et al. 2018]

limited

AI2-THOR: A New Platform for Visual AI

- * changing viewpoints
- * walking and jumping
- * applying forces
- picking & placing
- * opening & closing

* developed in Unity 3D game engine

Interactive Visual Environment

Input

agent's view

Task

Putting bowl into microwave

Output a sequence of high-level commands

Target-driven Visual Navigation

Input

visual observation

target

Output

target-driven navigation policy*

* Domain adaption with model trained in AI2-THOR

Goal-directed policy learning

Putting bowl into microwave

Navigate to Table

action goal
$$\pi(a|s,g) = \arg\max_a Q(s,a,g)$$
 state

expected sum of future rewards approximated by neural network

next action

The goal-conditional Bellman equation

$$Q^*(s,a,g) = \mathbb{E}_{\pi}[r_g(s,a) + \gamma \max_{a'} Q^*(s',a',g)]$$
 immediate reward of task g

Key idea: decoupling environment dynamics and goal specification

Key idea: decoupling environment dynamics and goal specification

$$r_g(s,a) = \phi(s,a)^{ op} \mathbf{w}_g$$
 reward state-action feature goal embedding

$$Q(s_i, a_i, g) = \mathbb{E}[\sum_{i=t}^{\infty} \gamma^{i-t} \mathbf{r}_g(s_i, a_i)]$$
 successor feature¹

$$= \mathbb{E}[\sum_{i=t}^{\infty} \gamma^{i-t} \mathbf{\phi}(s_i, a_i)^{\top} \mathbf{w}_g] = \mathbb{E}[\sum_{i=t}^{\infty} \gamma^{i-t} \phi(s_i, a_i)^{\top}] \mathbf{w}_g = \mathbf{\psi}(s_i, a_i)^{\top} \mathbf{w}_g$$

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, ICCV 2017

Key idea: decoupling environment dynamics and goal specification

action goal $\pi(a|s,g) = \arg\max_a Q(s,a,g)$ state

goal-directed Q-value

goal-independent
environment
dynamics

$$\psi(s,a)^{\top}$$

action goal
$$\pi(a|s,g) = \argmax_a Q(s,a,g)$$
 state

shared searching for apple across tasks
$$Q(s,a,g_0)$$
 $\psi(s,a)^{ op}$

 \mathbf{W}_{g_0} searching for apple

action goal
$$\pi(a|s,g) = \argmax_a Q(s,a,g)$$
 state

action goal
$$\pi(a|s,g) = \argmax_a Q(s,a,g)$$
 state

 \mathbf{W}_{g_2} putting apple to fridge

Trained Task: searching for a bowl

Zhu*, Gordon*, Kolve, Fox, Fei-Fei, Gupta, Mottaghi, Farhadi, ICCV 2017

Fast Policy Transfer with New Goal Embedding

Task: Search for an egg and put it into the sink

Transfer Learning

Learning from scratch

Summary - Part II

Developed a 3D virtual world (AI2-THOR) to study embodied agents in **interactive visual environments**

Transfer learning between sequential tasks through the decoupling of environment dynamics and goal specification

Part III: Hierarchical Tasks

[Xu*, Nair*, **Zhu**, et al. ICRA 2018] **Neural Task Programming (NTP)** [...]

[Huang*, Nair*, Xu*, **Zhu** et al. CVPR 2019] **Neural Task Graphs (NTG)** [...]

Hierarchical Tasks

"put bowl into microwave"

"prepare dinner"

Complex real-world tasks are hierarchical.

Hierarchical Tasks

Challenge: Task complexity grows exponentially.

"prepare dinner"

Intractable!

Hierarchical Tasks

Challenge: Task complexity grows exponentially.

Leveraging the compositionality of hierarchical tasks

"prepare dinner"

Videos supply massive knowledge to solve new tasks.

Many Turn to YouTube for Children's Content, News, How-To Lessons

An analysis of videos suggested by the site's recommendation engine finds that users are directed toward progressively longer and more popular content

BY AARON SMITH, SKYE TOOR AND PATRICK VAN KESSEL

(MaaHoo Studio/Getty Images)

NOVEMBER 7, 2018

Humans learn efficiently from video demonstrations.

Imitation of Televised Models by Infants

Andrew N. Meltzoff, Child Development 1988

Babies (14-24 months) can learn by imitating demonstrations from the TV screen.

single video demonstration

policy for the demonstrated task

a lot of training videos (seen tasks)

single test video (unseen task)

policy for the demonstrated task

[Duan et al. 17; Finn et al. 2017; Wang et al. 2017; Yu et al. 2018]

modeling demonstration as a **flat sequence**

modeling demonstration as a compositional structure

Neural Task Programming (NTP): Hierarchical Policy Learning as Neural Program Induction

Better generalization with less training data than flat baselines unseen task 0 0 7 50 100 400 1000 number of training tasks ■ Flat ■ NTP (Ours)

Qualitative

Quantitative

(the higher the better)

Task Graph

Nodes States infinite

Edges Actions

Conjugate Task Graph

Nodes Actions finite

Edges States (Preconditions)

Weaker supervision, less training data, and better generalization unseen task s 0 0 5 7 50 100 400 1000 number of training tasks ■ Flat ■ NTP (Ours) ■ NTG (Ours)

Qualitative

Quantitative

(the higher the better)

Summary - Part III

Extracting knowledge about the compositional structure of hierarchical tasks from video demonstrations

Meta-learning models with compositional priors generalize better than black-box models

closing the perception-action loop

general-purpose robot

Closing the Perception-Action Loop		Perception Modality	Action Abstraction	Learning Method
	primitive skills [RSS'18, CoRL'18a, CoRL'18b]	real-world sensory data	joint torque	reinforcement & imitation learning
	sequential tasks [ICRA'17, ICCV'17]	interactive visual environment	high-level command	transfer learning
	hierarchical tasks [ICRA'18, CVPR'19]	unstructured video data	task structure	meta-learning

closing the perception-action loop

general-purpose robot

Ongoing and Future Work

humanlike learning robot

primitive sequential tasks skills tasks

Future Direction: Multimodal Perception Beyond Vision

Learning coherent representations of multimodal information for control

combining vision and force for manipulation

Future Direction: Learning Knowledge of the World from Interaction

semantic

[Zhu et al. CVPR'16; Krishna, Zhu et al. IJCV'17; Xu, Zhu et al. CVPR'17; Zhu et al. CVPR'17]

physical

[**Zhu** et al. ECCV'14; Fang, **Zhu** et al. RSS'18]

geometric

[Chen, Xu, **Zhu** et al. CVPR'19]

causal

[ongoing work]

"To accelerate or to brake?"

Future Direction: Integrating Perception and Knowledge for Autonomy

RGB-D

[Fang, **Zhu** et al. RSS'18]

[Wang, Xu, **Zhu** et al. CVPR'19]

Data-driven + Model-driven Methods

ongoing work

broader collaboration

Acknowledgements

Fei-Fei Li

Silvio Savarese

Jeannette Bohg

Nando de Freitas

Ali Farhadi

Abhinav Gupta

Animesh Garg

Joseph Lim

Raia Hadsell

Danfei Xu

Ajay Mandlekar

De-An Huang

Michelle Lee

Kuan Fang

Suraj Nair

Jim Fan

